Find the general solution using the Gaussian method. Application of the Gauss method in game theory


1. System of linear algebraic equations

1.1 The concept of a system of linear algebraic equations

A system of equations is a condition consisting of simultaneous execution of several equations with respect to several variables. A system of linear algebraic equations (hereinafter referred to as SLAE) containing m equations and n unknowns is called a system of the form:

where numbers a ij are called system coefficients, numbers b i are called free terms, a ij And b i(i=1,…, m; b=1,…, n) represent some known numbers, and x 1 ,…, x n– unknown. In the designation of coefficients a ij the first index i denotes the number of the equation, and the second j is the number of the unknown at which this coefficient stands. The numbers x n must be found. It is convenient to write such a system in a compact matrix form: AX=B. Here A is the matrix of system coefficients, called the main matrix;

– column vector of unknowns xj.
is a column vector of free terms bi.

The product of matrices A*X is defined, since there are as many columns in matrix A as there are rows in matrix X (n pieces).

The extended matrix of a system is the matrix A of the system, supplemented by a column of free terms

1.2 Solving a system of linear algebraic equations

The solution to a system of equations is an ordered set of numbers (values ​​of variables), when substituting them instead of variables, each of the equations of the system turns into a true equality.

A solution to a system is n values ​​of the unknowns x1=c1, x2=c2,…, xn=cn, upon substitution of which all equations of the system become true equalities. Any solution to the system can be written as a column matrix

A system of equations is called consistent if it has at least one solution, and inconsistent if it does not have any solution.

A consistent system is called determinate if it has a single solution, and indefinite if it has more than one solution. In the latter case, each of its solutions is called a particular solution of the system. The set of all particular solutions is called the general solution.

Solving a system means finding out whether it is compatible or inconsistent. If the system is consistent, find its general solution.

Two systems are called equivalent (equivalent) if they have the same general solution. In other words, systems are equivalent if every solution of one of them is a solution of the other, and vice versa.

A transformation, the application of which turns a system into a new system equivalent to the original one, is called an equivalent or equivalent transformation. Examples of equivalent transformations include the following transformations: interchanging two equations of a system, interchanging two unknowns along with the coefficients of all equations, multiplying both sides of any equation of a system by a nonzero number.

A system of linear equations is called homogeneous if all free terms are equal to zero:

A homogeneous system is always consistent, since x1=x2=x3=…=xn=0 is a solution of the system. This solution is called zero or trivial.

2. Gaussian elimination method

2.1 The essence of the Gaussian elimination method

The classical method for solving systems of linear algebraic equations is the method of sequential elimination of unknowns - Gaussian method(it is also called the Gaussian elimination method). This is a method of sequential elimination of variables, when, using elementary transformations, a system of equations is reduced to an equivalent system of a step (or triangular) form, from which all other variables are found sequentially, starting with the last (by number) variables.

The solution process using the Gaussian method consists of two stages: forward and backward moves.

1. Direct stroke.

At the first stage, the so-called direct move is carried out, when, through elementary transformations over the rows, the system is brought to a stepped or triangular shape, or it is established that the system is incompatible. Namely, among the elements of the first column of the matrix, select a non-zero one, move it to the uppermost position by rearranging the rows, and subtract the resulting first row from the remaining rows after the rearrangement, multiplying it by a value equal to the ratio of the first element of each of these rows to the first element of the first row, zeroing thus the column below it.

After the indicated transformations have been completed, the first row and first column are mentally crossed out and continued until a matrix of zero size remains. If at any iteration there is no non-zero element among the elements of the first column, then go to the next column and perform a similar operation.

At the first stage (direct stroke), the system is reduced to a stepped (in particular, triangular) form.

The system below has a stepwise form:

,

Coefficients aii are called the main (leading) elements of the system.

(if a11=0, rearrange the rows of the matrix so that a 11 was not equal to 0. This is always possible, because otherwise the matrix contains a zero column, its determinant is equal to zero and the system is inconsistent).

Let's transform the system by eliminating the unknown x1 in all equations except the first (using elementary transformations of the system). To do this, multiply both sides of the first equation by

and add term by term with the second equation of the system (or from the second equation subtract term by term by the first, multiplied by ). Then we multiply both sides of the first equation by and add them to the third equation of the system (or from the third we subtract the first one multiplied by ). Thus, we sequentially multiply the first line by a number and add to i th line, for i= 2, 3, …,n.

Continuing this process, we obtain an equivalent system:


– new values ​​of coefficients for unknowns and free terms in the last m-1 equations of the system, which are determined by the formulas:

Thus, at the first step, all coefficients lying under the first leading element a 11 are destroyed

0, in the second step the elements lying under the second leading element a 22 (1) are destroyed (if a 22 (1) 0), etc. Continuing this process further, we finally, at the (m-1) step, reduce the original system to a triangular system.

If, in the process of reducing the system to a stepwise form, zero equations appear, i.e. equalities of the form 0=0, they are discarded. If an equation of the form appears

then this indicates the incompatibility of the system.

This is where the direct progression of Gauss's method ends.

2. Reverse stroke.

At the second stage, the so-called reverse move is carried out, the essence of which is to express all the resulting basic variables in terms of non-basic ones and build a fundamental system of solutions, or, if all the variables are basic, then express numerically the only solution to the system of linear equations.

This procedure begins with the last equation, from which the corresponding basic variable is expressed (there is only one in it) and substituted into the previous equations, and so on, going up the “steps”.

Each line corresponds to exactly one basis variable, so at every step except the last (topmost), the situation exactly repeats the case of the last line.

Note: in practice, it is more convenient to work not with the system, but with its extended matrix, performing all the elementary transformations on its rows. It is convenient for the coefficient a11 to be equal to 1 (rearrange the equations, or divide both sides of the equation by a11).

2.2 Examples of solving SLAEs using the Gaussian method

In this section, using three different examples, we will show how the Gaussian method can solve SLAEs.

Example 1. Solve a 3rd order SLAE.

Let's reset the coefficients at

in the second and third lines. To do this, multiply them by 2/3 and 1, respectively, and add them to the first line:

Let a system of linear algebraic equations be given that needs to be solved (find such values ​​of the unknowns xi that turn each equation of the system into an equality).

We know that a system of linear algebraic equations can:

1) Have no solutions (be non-joint).
2) Have infinitely many solutions.
3) Have a single solution.

As we remember, Cramer's rule and the matrix method are not suitable in cases where the system has infinitely many solutions or is inconsistent. Gauss methodthe most powerful and versatile tool for finding solutions to any system of linear equations, which in every case will lead us to the answer! The method algorithm itself works the same in all three cases. If the Cramer and matrix methods require knowledge of determinants, then to apply the Gauss method you only need knowledge of arithmetic operations, which makes it accessible even to primary school students.

Augmented matrix transformations ( this is the matrix of the system - a matrix composed only of the coefficients of the unknowns, plus a column of free terms) systems of linear algebraic equations in the Gauss method:

1) With troki matrices Can rearrange in some places.

2) if proportional (as a special case – identical) rows appear (or exist) in the matrix, then you should delete from the matrix all these rows except one.

3) if a zero row appears in the matrix during transformations, then it should also be delete.

4) a row of the matrix can be multiply (divide) to any number other than zero.

5) to a row of the matrix you can add another string multiplied by a number, different from zero.

In the Gauss method, elementary transformations do not change the solution of the system of equations.

The Gauss method consists of two stages:

  1. “Direct move” - using elementary transformations, bring the extended matrix of a system of linear algebraic equations to a “triangular” step form: the elements of the extended matrix located below the main diagonal are equal to zero (top-down move). For example, to this type:

To do this, perform the following steps:

1) Let us consider the first equation of a system of linear algebraic equations and the coefficient for x 1 is equal to K. The second, third, etc. we transform the equations as follows: we divide each equation (coefficients of the unknowns, including free terms) by the coefficient of the unknown x 1 in each equation, and multiply by K. After this, we subtract the first from the second equation (coefficients of unknowns and free terms). For x 1 in the second equation we obtain the coefficient 0. From the third transformed equation we subtract the first equation until all equations except the first, for unknown x 1, have a coefficient 0.

2) Let's move on to the next equation. Let this be the second equation and the coefficient for x 2 equal to M. We proceed with all “lower” equations as described above. Thus, “under” the unknown x 2 there will be zeros in all equations.

3) Move on to the next equation and so on until one last unknown and the transformed free term remain.

  1. The “reverse move” of the Gauss method is to obtain a solution to a system of linear algebraic equations (the “bottom-up” move).

From the last “lower” equation we obtain one first solution - the unknown x n. To do this, we solve the elementary equation A * x n = B. In the example given above, x 3 = 4. We substitute the found value into the “upper” next equation and solve it with respect to the next unknown. For example, x 2 – 4 = 1, i.e. x 2 = 5. And so on until we find all the unknowns.

Example.

Let's solve the system of linear equations using the Gauss method, as some authors advise:

Let us write down the extended matrix of the system and, using elementary transformations, bring it to a stepwise form:
We look at the upper left “step”. We should have one there. The problem is that there are no units in the first column at all, so rearranging the rows will not solve anything. In such cases, the unit must be organized using an elementary transformation. This can usually be done in several ways. Let's do this: . To the first line we add the second line, multiplied by –1. That is, we mentally multiplied the second line by –1 and added the first and second lines, while the second line did not change.

Now at the top left there is “minus one”, which suits us quite well. Anyone who wants to get +1 can perform an additional action: multiply the first line by –1 (change its sign).

Step 2 . The first line, multiplied by 5, was added to the second line. The first line, multiplied by 3, was added to the third line.

Step 3 . The first line was multiplied by –1, in principle, this is for beauty. The sign of the third line was also changed and it was moved to second place, so that on the second “step” we had the required unit.

Step 4 . The third line was added to the second line, multiplied by 2.

Step 5 . The third line was divided by 3.

A sign that indicates an error in calculations (more rarely, a typo) is a “bad” bottom line. That is, if we got something like (0 0 11 |23) below, and, accordingly, 11x 3 = 23, x 3 = 23/11, then with a high degree of probability we can say that an error was made during elementary transformations.

Let’s do the reverse; in the design of examples, the system itself is often not rewritten, but the equations are “taken directly from the given matrix.” The reverse move, I remind you, works from the bottom up. In this example, the result was a gift:

x 3 = 1
x 2 = 3
x 1 + x 2 – x 3 = 1, therefore x 1 + 3 – 1 = 1, x 1 = –1

Answer:x 1 = –1, x 2 = 3, x 3 = 1.

Let's solve the same system using the proposed algorithm. We get

4 2 –1 1
5 3 –2 2
3 2 –3 0

Divide the second equation by 5, and the third by 3. We get:

4 2 –1 1
1 0.6 –0.4 0.4
1 0.66 –1 0

Multiplying the second and third equations by 4, we get:

4 2 –1 1
4 2,4 –1.6 1.6
4 2.64 –4 0

Subtract the first equation from the second and third equations, we have:

4 2 –1 1
0 0.4 –0.6 0.6
0 0.64 –3 –1

Divide the third equation by 0.64:

4 2 –1 1
0 0.4 –0.6 0.6
0 1 –4.6875 –1.5625

Multiply the third equation by 0.4

4 2 –1 1
0 0.4 –0.6 0.6
0 0.4 –1.875 –0.625

Subtracting the second from the third equation, we obtain a “stepped” extended matrix:

4 2 –1 1
0 0.4 –0.6 0.6
0 0 –1.275 –1.225

Thus, since the error accumulated during the calculations, we obtain x 3 = 0.96 or approximately 1.

x 2 = 3 and x 1 = –1.

By solving in this way, you will never get confused in the calculations and, despite the calculation errors, you will get the result.

This method of solving a system of linear algebraic equations is easily programmable and does not take into account the specific features of coefficients for unknowns, because in practice (in economic and technical calculations) one has to deal with non-integer coefficients.

I wish you success! See you in class! Tutor Dmitry Aystrakhanov.

website, when copying material in full or in part, a link to the source is required.

Solving systems of linear equations using the Gauss method. Suppose we need to find a solution to the system from n linear equations with n unknown variables
the determinant of the main matrix of which is different from zero.

The essence of the Gauss method consists of sequentially eliminating unknown variables: first eliminating x 1 from all equations of the system, starting from the second, is further excluded x 2 from all equations, starting with the third, and so on, until only the unknown variable remains in the last equation x n. This process of transforming system equations to sequentially eliminate unknown variables is called direct Gaussian method. After completing the forward progression of the Gaussian method, from the last equation we find x n, using this value from the penultimate equation we calculate xn-1, and so on, from the first equation we find x 1. The process of calculating unknown variables when moving from the last equation of the system to the first is called inverse of the Gaussian method.

Let us briefly describe the algorithm for eliminating unknown variables.

We will assume that , since we can always achieve this by interchanging the equations of the system. Eliminate the unknown variable x 1 from all equations of the system, starting from the second. To do this, to the second equation of the system we add the first, multiplied by , to the third equation we add the first, multiplied by , and so on, to nth to the equation we add the first one, multiplied by . The system of equations after such transformations will take the form

where and .

We would arrive at the same result if we expressed x 1 through other unknown variables in the first equation of the system and the resulting expression was substituted into all other equations. So the variable x 1 excluded from all equations, starting from the second.

Next, we proceed in a similar way, but only with part of the resulting system, which is marked in the figure

To do this, to the third equation of the system we add the second, multiplied by , to the fourth equation we add the second, multiplied by , and so on, to nth to the equation we add the second one, multiplied by . The system of equations after such transformations will take the form

where and . So the variable x 2 excluded from all equations starting from the third.

Next we proceed to eliminating the unknown x 3, in this case we act similarly with the part of the system marked in the figure

So we continue the direct progression of the Gaussian method until the system takes the form

From this moment we begin the reverse of the Gaussian method: we calculate x n from the last equation as, using the obtained value x n we find xn-1 from the penultimate equation, and so on, we find x 1 from the first equation.


From the last “lower” equation we obtain one first solution - the unknown x n. To do this, we solve the elementary equation A * x n = B. In the example given above, x 3 = 4. We substitute the found value into the “upper” next equation and solve it with respect to the next unknown. For example, x 2 – 4 = 1, i.e. x 2 = 5. And so on until we find all the unknowns.

Solve system of linear equations Gauss method.

Educational institution "Belarusian State

Agricultural Academy"


Department of Higher Mathematics

Guidelines

to study the topic “Gauss method for solving systems of linear

equations" by students of the accounting faculty of correspondence education (NISPO)

Gorki, 2013

Gauss method for solving systems of linear equations

Equivalent systems of equations

Two systems of linear equations are said to be equivalent if each solution of one of them is a solution of the other. The process of solving a system of linear equations consists of sequentially transforming it into an equivalent system using the so-called elementary transformations , which are:

1) rearrangement of any two equations of the system;

2) multiplying both sides of any equation of the system by a nonzero number;

3) adding to any equation another equation multiplied by any number;

4) crossing out an equation consisting of zeros, i.e. equations of the form

Gaussian elimination

Consider the system m linear equations with n unknown:

The essence of the Gaussian method or the method of sequential elimination of unknowns is as follows.

First, using elementary transformations, the unknown is eliminated from all equations of the system except the first. Such system transformations are called Gaussian elimination step . The unknown is called enabling variable at the first step of transformation. The coefficient is called resolution factor , the first equation is called resolving equation , and the column of coefficients at permission column .

When performing one step of Gaussian elimination, you need to use the following rules:

1) the coefficients and the free term of the resolving equation remain unchanged;

2) the coefficients of the resolution column located below the resolution coefficient become zero;

3) all other coefficients and free terms when performing the first step are calculated according to the rectangle rule:



, Where i=2,3,…,m; j=2,3,…,n.

We will perform similar transformations on the second equation of the system. This will lead to a system in which the unknown will be eliminated in all equations except the first two. As a result of such transformations over each of the equations of the system (direct progression of the Gaussian method), the original system is reduced to an equivalent step system of one of the following types.

Reverse Gaussian Method

Step system

has a triangular appearance and that's it (i=1,2,…,n). Such a system has a unique solution. The unknowns are determined starting from the last equation (reverse of the Gaussian method).

The step system has the form

where, i.e. the number of equations of the system is less than or equal to the number of unknowns. This system has no solutions, since the last equation will not be satisfied for any values ​​of the variable.

Step type system

has countless solutions. From the last equation, the unknown is expressed through the unknowns . Then, in the penultimate equation, instead of the unknown, its expression is substituted through the unknowns . Continuing the reverse of the Gaussian method, the unknowns can be expressed in terms of unknowns . In this case, the unknowns are called free and can take any values, and unknown basic.

When solving systems in practice, it is convenient to perform all transformations not with a system of equations, but with an extended matrix of the system, consisting of coefficients for unknowns and a column of free terms.

Example 1. Solve system of equations

Solution. Let's create an extended matrix of the system and perform elementary transformations:

.

In the extended matrix of the system, the number 3 (it is highlighted) is the resolution coefficient, the first row is the resolution row, and the first column is the resolution column. When moving to the next matrix, the resolution row does not change; all elements of the resolution column below the resolution element are replaced by zeros. And all other elements of the matrix are recalculated according to the quadrilateral rule. Instead of element 4 in the second line we write , instead of element -3 in the second line it will be written etc. Thus, the second matrix will be obtained. The resolution element of this matrix will be the number 18 in the second row. To form the next (third matrix), we leave the second row unchanged, in the column under the resolving element we write zero and recalculate the remaining two elements: instead of the number 1 we write , and instead of the number 16 we write .

As a result, the original system was reduced to an equivalent system

From the third equation we find . Let's substitute this value into the second equation: y=3. Let's substitute the found values ​​into the first equation y And z: , x=2.

Thus, the solution to this system of equations is x=2, y=3, .

Example 2. Solve system of equations

Solution. Let's perform elementary transformations on the extended matrix of the system:

In the second matrix, each element of the third row is divided by 2.

In the fourth matrix, each element of the third and fourth rows was divided by 11.

. The resulting matrix corresponds to the system of equations

Solving this system, we find , , .

Example 3. Solve system of equations

Solution. Let's write the extended matrix of the system and perform elementary transformations:



.

In the second matrix, each element of the second, third and fourth rows was divided by 7.

As a result, a system of equations was obtained

equivalent to the original one.

Since there are two fewer equations than unknowns, then from the second equation . Let's substitute the expression for into the first equation: , .

Thus, the formulas give a general solution to this system of equations. Unknowns are free and can take any value.

Let, for example, Then And . Solution is one of the particular solutions of the system, of which there are countless.

Questions for self-control of knowledge

1) What transformations of linear systems are called elementary?

2) What transformations of the system are called the Gaussian elimination step?

3) What is a resolving variable, resolving coefficient, resolving column?

4) What rules should be used when performing one step of Gaussian elimination?

Since the beginning of the 16th-18th centuries, mathematicians have intensively begun to study functions, thanks to which so much in our lives has changed. Computer technology simply would not exist without this knowledge. Various concepts, theorems, and solution techniques have been created to solve complex problems, linear equations, and functions. One of such universal and rational methods and techniques for solving linear equations and their systems was the Gauss method. Matrices, their rank, determinant - everything can be calculated without using complex operations.

What is SLAU

In mathematics, there is the concept of SLAE - a system of linear algebraic equations. What is she like? This is a set of m equations with the required n unknown quantities, usually denoted as x, y, z, or x 1, x 2 ... x n, or other symbols. Solving a given system using the Gaussian method means finding all the unknown unknowns. If a system has the same number of unknowns and equations, then it is called an nth order system.

The most popular methods for solving SLAEs

In educational institutions of secondary education, various methods for solving such systems are studied. Most often these are simple equations consisting of two unknowns, so any existing method for finding the answer to them will not take much time. This can be like a substitution method, when another is derived from one equation and substituted into the original one. Or the method of term-by-term subtraction and addition. But the Gauss method is considered the easiest and most universal. It makes it possible to solve equations with any number of unknowns. Why is this particular technique considered rational? It's simple. The good thing about the matrix method is that it does not require rewriting unnecessary symbols several times as unknowns; it is enough to perform arithmetic operations on the coefficients - and you will get a reliable result.

Where are SLAEs used in practice?

The solution to SLAEs are the points of intersection of lines on the graphs of functions. In our high-tech computer age, people who are closely associated with the development of games and other programs need to know how to solve such systems, what they represent and how to check the correctness of the resulting result. Most often, programmers develop special linear algebra calculator programs, which also includes a system of linear equations. The Gauss method allows you to calculate all existing solutions. Other simplified formulas and techniques are also used.

SLAU compatibility criterion

Such a system can only be solved if it is compatible. For clarity, let us represent the SLAE in the form Ax=b. It has a solution if rang(A) equals rang(A,b). In this case, (A,b) is an extended form matrix that can be obtained from matrix A by rewriting it with free terms. It turns out that solving linear equations using the Gaussian method is quite easy.

Perhaps some of the symbols are not entirely clear, so it is necessary to consider everything with an example. Let's say there is a system: x+y=1; 2x-3y=6. It consists of only two equations, in which there are 2 unknowns. The system will have a solution only if the rank of its matrix is ​​equal to the rank of the extended matrix. What is rank? This is the number of independent lines of the system. In our case, the rank of the matrix is ​​2. Matrix A will consist of coefficients located near the unknowns, and the coefficients located behind the “=” sign also fit into the extended matrix.

Why can SLAEs be represented in matrix form?

Based on the compatibility criterion according to the proven Kronecker-Capelli theorem, a system of linear algebraic equations can be represented in matrix form. Using the Gaussian cascade method, you can solve the matrix and get a single reliable answer for the entire system. If the rank of an ordinary matrix is ​​equal to the rank of its extended matrix, but is less than the number of unknowns, then the system has an infinite number of answers.

Matrix transformations

Before moving on to solving matrices, you need to know what actions can be performed on their elements. There are several elementary transformations:

  • By rewriting the system in matrix form and solving it, you can multiply all elements of the series by the same coefficient.
  • In order to transform the matrix into canonical form, you can swap two parallel rows. The canonical form implies that all matrix elements that are located along the main diagonal become ones, and the remaining ones become zeros.
  • The corresponding elements of parallel rows of the matrix can be added to one another.

Jordan-Gauss method

The essence of solving systems of linear homogeneous and inhomogeneous equations using the Gaussian method is to gradually eliminate the unknowns. Let's say we have a system of two equations in which there are two unknowns. To find them, you need to check the system for compatibility. The equation is solved very simply by the Gauss method. It is necessary to write down the coefficients located near each unknown in matrix form. To solve the system, you will need to write out the extended matrix. If one of the equations contains a smaller number of unknowns, then “0” must be put in place of the missing element. All known transformation methods are applied to the matrix: multiplication, division by a number, adding the corresponding elements of the series to each other, and others. It turns out that in each row it is necessary to leave one variable with the value “1”, the rest should be reduced to zero. For a more precise understanding, it is necessary to consider the Gauss method with examples.

A simple example of solving a 2x2 system

To begin with, let's take a simple system of algebraic equations, in which there will be 2 unknowns.

Let's rewrite it into an extended matrix.

To solve this system of linear equations, only two operations are required. We need to bring the matrix to canonical form so that there are ones along the main diagonal. So, transferring from the matrix form back to the system, we get the equations: 1x+0y=b1 and 0x+1y=b2, where b1 and b2 are the resulting answers in the solution process.

  1. The first action when solving an extended matrix will be this: the first row must be multiplied by -7 and added corresponding elements to the second row in order to get rid of one unknown in the second equation.
  2. Since solving equations using the Gauss method involves reducing the matrix to canonical form, then it is necessary to perform the same operations with the first equation and remove the second variable. To do this, we subtract the second line from the first and get the required answer - the solution of the SLAE. Or, as shown in the figure, we multiply the second row by a factor of -1 and add the elements of the second row to the first row. It is the same.

As we can see, our system was solved by the Jordan-Gauss method. We rewrite it in the required form: x=-5, y=7.

An example of a 3x3 SLAE solution

Suppose we have a more complex system of linear equations. The Gauss method makes it possible to calculate the answer even for the most seemingly confusing system. Therefore, in order to delve deeper into the calculation methodology, you can move on to a more complex example with three unknowns.

As in the previous example, we rewrite the system in the form of an extended matrix and begin to bring it to its canonical form.

To solve this system, you will need to perform much more actions than in the previous example.

  1. First you need to make the first column one unit element and the rest zeros. To do this, multiply the first equation by -1 and add the second equation to it. It is important to remember that we rewrite the first line in its original form, and the second in a modified form.
  2. Next, we remove this same first unknown from the third equation. To do this, multiply the elements of the first row by -2 and add them to the third row. Now the first and second lines are rewritten in their original form, and the third - with changes. As you can see from the result, we got the first one at the beginning of the main diagonal of the matrix and the remaining zeros. A few more steps, and the system of equations by the Gaussian method will be reliably solved.
  3. Now you need to perform operations on other elements of the rows. The third and fourth actions can be combined into one. We need to divide the second and third lines by -1 to get rid of the minus ones on the diagonal. We have already brought the third line to the required form.
  4. Next we bring the second line to canonical form. To do this, we multiply the elements of the third row by -3 and add them to the second row of the matrix. From the result it is clear that the second line is also reduced to the form we need. It remains to perform a few more operations and remove the coefficients of the unknowns from the first line.
  5. To make 0 from the second element of a row, you need to multiply the third row by -3 and add it to the first row.
  6. The next decisive step will be to add the necessary elements of the second row to the first row. This way we get the canonical form of the matrix, and, accordingly, the answer.

As you can see, solving equations using the Gauss method is quite simple.

An example of solving a 4x4 system of equations

Some more complex systems of equations can be solved using the Gaussian method using computer programs. It is necessary to enter the coefficients for the unknowns into the existing empty cells, and the program itself will step by step calculate the required result, describing in detail each action.

Below are step-by-step instructions for solving such an example.

In the first step, free coefficients and numbers for unknowns are entered into empty cells. Thus, we get the same extended matrix that we write manually.

And all the necessary arithmetic operations are performed to bring the extended matrix to its canonical form. It is necessary to understand that the answer to a system of equations is not always integers. Sometimes the solution may be from fractional numbers.

Checking the correctness of the solution

The Jordan-Gauss method provides for checking the correctness of the result. In order to find out whether the coefficients are calculated correctly, you just need to substitute the result into the original system of equations. The left side of the equation must match the right side behind the equal sign. If the answers do not match, then you need to recalculate the system or try to apply to it another method of solving SLAEs known to you, such as substitution or term-by-term subtraction and addition. After all, mathematics is a science that has a huge number of different solution methods. But remember: the result should always be the same, no matter what solution method you used.

Gauss method: the most common errors when solving SLAEs

When solving linear systems of equations, errors most often occur such as incorrect transfer of coefficients into matrix form. There are systems in which some unknowns are missing from one of the equations; then, when transferring data to an extended matrix, they can be lost. As a result, when solving this system, the result may not correspond to the actual one.

Another major mistake may be incorrectly writing out the final result. It is necessary to clearly understand that the first coefficient will correspond to the first unknown from the system, the second - to the second, and so on.

The Gauss method describes in detail the solution of linear equations. Thanks to it, it is easy to carry out the necessary operations and find the right result. In addition, this is a universal tool for finding a reliable answer to equations of any complexity. Maybe that's why it is so often used when solving SLAEs.

Editor's Choice
In this lunar calendar for December 2016 you will find information about the position of the moon, its phases for each day of the month. When favorable...

Supporters of proper nutrition, strictly calorie counting, very often have to deny themselves small gastronomic joys in the form of...

Crispy puff pastry made from ready-made puff pastry is quick, inexpensive and very tasty! The only thing you need is time to...

Ingredients for the sauce: Sour cream - 200 ml Dry white wine - ½ cup Red caviar - 2 tbsp. spoons Dill - ½ regular bunch White onion...
An animal such as a kangaroo in reality delights not only children, but also adults. But dream books refer to the appearance of a kangaroo in a dream...
Today I, the magician Sergei Artgrom, will talk about the magic of runes, and will pay attention to the runes of prosperity and wealth. To attract money into your life...
There is probably no person who does not want to look into his future and get answers to the questions that are currently troubling him. If correct...
The future is a mystery that everyone so wanted to get a glimpse of, and doing so was not such an easy task. If our...
Most often, housewives throw away orange zest; they can sometimes use it to make candied fruits. But it's a thoughtless waste...