Кожно-гальваническая реакция. Кожно — гальваническая реакция


Изобретение относится к области медицины и медицинской техники, в частности к способам и устройствам для диагностики состояния живого организма по электрической проводимости кожи, может быть использовано в экспериментальной и клинической медицине, а также в психофизиологии, педагогике и спортивной медицине. Изобретение позволяет устранить помехи, обусловленные артефактами движения человека, а также вызванные небиологическими причинами (различными электрическими помехами и аппаратурными шумами). Способ характеризуется тем, что анализируют форму каждого импульса в последовательности импульсов в полосе частот фазической составляющей. Для этого регистрируют первую и вторую производные по времени от логарифма электрической проводимости кожи. Определяют величину тренда, обусловленного тонической составляющей, и корректируют величину первой производной, вычитая из нее величину тренда. Далее определяют время прихода импульса первой производной в момент превышения величинной второй производной пороговой величины, а затем анализируют форму упомянутого импульса. При удовлетворении параметров этой формы установленным критериям относят упомянутый импульс к импульсам фазической составляющей, а при невыполнении - к артефактам. 2 с. и 9 з.п.ф-лы, 6 ил.

Изобретение относится к области медицины и медицинской техники, в частности к способам и устройствам для диагностики состояния живого организма по электрической проводимости кожи, и может быть использовано в экспериментальной и клинической медицине, а также в психофизиологии, педагогике и спортивной медицине. Известно, что электрическая проводимость кожи живого организма является чувствительным индикатором его физиологического и психического состояния, а параметры отклика проводимости на внешнее воздействие, так называемая кожно-гальваническая реакция (КГР), позволяет оценить психофизиологический статус индивидуума. При исследовании КГР различают показатели тонической и фазической составляющих электродермальной активности (ЭДА). Тоническая активность характеризует собой изменения проводимости кожи, происходящие относительно медленно с периодом нескольких минут и более. Фазическая активность - это процессы, происходящие много быстрее на фоне тонической активности, - их характерные времена единицы секунд. Именно фазическая активность в большей мере и характеризует реакцию организма на внешний раздражитель и в дальнейшем именуется фазической составляющей, или КГР. Известные способы регистрации КГР предусматривают наложение на кожу испытуемого пары электродов, подключенных к источнику зондирующего тока и регистратору тока в цепи электроды - источник тока. Реакция имеет место, когда потовые железы выпрыскивают секрет и в цепи возникают кратковременные импульсы электрического тока. Такие импульсы генерируются либо спонтанно, либо вследствие стрессового или иного раздражителя . Известные устройства для регистрации КГР включают источник тока, подключенный к электродам, а также блок регистрации изменения во времени электрического сигнала и его обработки. Обработка сигнала заключается в выделении фазической составляющей на фоне тонической составляющей. Это может обеспечиваться, например, в блоке, использующем мостовую схему и ряд усилителей постоянного тока с индивидуальной установкой нуля. Значение тонической составляющей (далее именуемой тренд) вычисляется аналоговым путем, а затем вычитается из сигнала. На эту величину на графопостроителе сдвигается к нулю базовая линия . В другом известном устройстве относительный уровень фазической составляющей по сравнению с тонической составляющей электродермальной активности выделяется схемой, содержащей на выходах соответствующих усилителей фильтры верхних и нижних частот, а также схему деления. Следует отметить, что в упомянутых выше способе и устройствах для регистрации кожно-гальванической реакции не предусматриваются средства для анализа самих импульсов фазической составляющей, в то время как они могут дать дополнительную информацию о состоянии испытуемого. Наиболее близким к заявляемому способу является способ регистрации кожно-гальванической реакции, реализованный в устройстве . Способ предусматривает закрепление на теле человека двух электродов, подачу электрического напряжения на них, регистрацию изменения во времени электрического тока, протекающего между электродами, и фиксацию импульсов тока в полосе частот фазической составляющей электродермальной активности. Прототипом устройства для регистрации кожно-гальванических реакций является устройство, реализующее вышеупомянутый способ . Оно имеет электроды со средствами их крепления к коже, подключенные к входному устройству, средства для выделения сигналов в полосах частот фазической и тонической составляющих электродермальной активности, средства для детектирования импульсов фазической составляющей, средства для уменьшения амплитуды импульсных помех, а также блок регистрации. Однако вышеупомянутые способ и устройство не свободны от артефактов, которые накладываются на временную последовательность сигналов КГР и сходны с импульсами фазической составляющей. Эти артефакты являются, например, следствием неконтролируемых движений человека при регистрации (т.н. артефакты движения (АД)). В сигнале могут появляться также шумы из-за изменения контактного сопротивления между, электродами и кожей человека. Упомянутые выше помехи, включая АД, могут иметь характеристические частоты, сравнимые с фазической составляющей, что ставит их выявление и учет в особую проблему. Ранее эта проблема решалась установкой специальных датчиков, в дополнение к электродермальным, на тело человека, что усложняет эксперимент (R.NICULA.- "Psychological Correlates of Nonspecific SCR", - Psychophysiology; 1991, vol.28. No l, p.p. 86-90). Кроме того, тоническая составляющая имеет минимальные характерные времена порядка нескольких минут. Эти изменения необходимо учитывать, особенно в тех случаях, когда амплитуда и частота фазической составляющей понижены, а тонические изменения максимальны. Такой процесс характерен и при аппаратном дрейфе измерительного тракта, и может быть ошибочно интерпретирован как информационный сигнал. Задачей настоящего изобретения является создание способа регистрации КГР и устройства для его осуществления, свободных от помех, обусловленных артефактами движения человека, а также помех, вызванных небиологическими причинами (техногенными и атмосферными электрическими разрядами и аппаратурными шумами). Эта задача решается без использования каких-либо дополнительных приспособлений, аналогичных описанным в вышеупомянутой работе R.NICULA. Информация о помехах извлекается непосредственно из самого сигнала КГР, и в основе методики лежит подробный анализ формы каждого электрического импульса в последовательности импульсов, поступающих с электродов. Известно, что импульс фазической составляющей представляет собой спонтанное кратковременное повышение проводимости кожи с последующим возвратом к исходному уровню. Такой импульс обладает специфической асимметрией формы: имеет крутой передний и более пологий задний фронты (см. "Principles of Psychophysiology. Physical, Social, And Inferential Elements". Ed. John T. Cacioppo and Louis G. Tassinary. Cambridge University Press, 1990, p.305). Для определения искомых параметров этого импульса КГР производится дифференцирование логарифма входного сигнала (например, с помощью аналогового дифференциатора). Патентуемый способ включает закрепление на теле человека двух электродов, подачу электрического напряжения на них, регистрацию изменения во времени электрического тока, протекающего между электродами и фиксацию импульсов тока в полосе частот фазической составляющей электродермальной активности. Способ характеризуется тем, что анализируют форму каждого импульса в последовательности импульсов в полосе частот фазической составляющей. Для этого регистрируют сигнал в виде производной по времени от логарифма численного значения электрического тока, определяют величину тренда, обусловленного изменениями сигнала в полосе частот тонической составляющей электродермальной активности, и корректируют величину первой производной, вычитая из нее величину тренда. Далее регистрируют вторую производную по времени от логарифма численного значения электрического тока, определяют начало импульса упомянутого сигнала по моменту превышения второй производной пороговой величины, а затем определяют соответствие формы импульса установленным критериям. При наличии такого соответствия относят анализируемый импульс к импульсам фазической составляющей, а при отсутствии - относят к артефактам. Величина тренда может определяться как среднее значение первой производной за интервал времени, характерный для тонической составляющей, преимущественно от 30 до 120 с. Кроме того, величина тренда может определяться как среднее значение первой производной за интервал времени 1-2 с при условии, что величины первой и второй производных меньше заданных пороговых значений в течение этого интервала времени. Временем прихода импульса первой производной может считаться момент, когда вторая производная превышает пороговое значение по меньшей мере на 0,2%. При определении формы импульса регистрируют значения максимальной (f MAX) и минимальной (f min) величин первой производной за вычетом величины тренда, их отношение r, интервал времени (t x) между минимумом и максимумом первой производной. При этом моменты достижения максимальной и минимальной величин первой производной определяются по моменту смены знака второй производной. Критериями принадлежности анализируемого импульса к сигналу фазической составляющей электродермальной активности могут являться следующие неравенства (для фильтрованного сигнала): 0,5 < f MAX < 10; -2 < f min < -0,1; 1,8 < t x < 7; 1,5 < r < 10 Вышеприведенные существенные признаки патентуемого способа обеспечивают достижение технического результата - повышения помехозащищенности регистрации кожно-гальванической реакции в условиях реальных помех различного происхождения, а также артефактов движения самого испытуемого. Ниже описанные средства для реализации способа могут быть выполнены как приборным, так и программным путем и их сущность ясна из приведенного описания. Устройство для регистрации кожно-гальванических реакций содержит электроды со средствами их крепления, подключенные к входному устройству, средства для подавления импульсных помех, средства для выделения сигналов в полосах частот фазической и тонической составляющих электродермальной активности, средства для детектирования импульсов фазической составляющей и блок регистрации. Средства выделения сигнала в полосах частот тонической и фазической составляющих, средства для подавления импульсных помех и средства для детектирования импульсов фазической составляющей выполнены в виде последовательно подключенных к входному устройству фильтра нижних частот, блока преобразования логарифма входного сигнала в первую и вторую производные по времени и блока анализа формы импульсов, при этом выход последнего подключен к входу блока регистрации. Входное устройство может представлять собой стабилизированный источник электрического напряжения и резистор, подключенные последовательно к электродам, логарифмирующий усилитель с дифференциальным входным каскадом, при этом резистор шунтирует входы логарифмирующего усилителя. Блок преобразования логарифма входного сигнала в первую и вторую производные по времени может быть выполнен в виде первого и второго дифференциаторов и фильтра нижних частот, при этом выход первого дифференциатора подключен к входам второго дифференциатора и фильтра нижних частот, выходы которых являются выходами блока. Блок анализа формы может включать средства для определения максимальной скорости изменения проводимости на переднем и заднем фронтах анализируемого импульса, средства для определения асимметрии его формы, средства для определения ширины импульса, средства для сравнения упомянутых величин с установленными пределами для выработки сигнала принадлежности анализируемого импульса сигналу фазической составляющей электродермальной активности. Блок преобразования входного сигнала в первую и вторую производные по времени от его логарифма и блок анализа формы импульсов могут быть выполнены на базе компьютера, подключенного к входному устройству через аналого-цифровой преобразователь. По сведениям, которыми располагают изобретатели, технический результат - повышение достоверности при выделении импульсов фазической составляющей очевидным образом не следует из сведений, содержащихся в уровне техники. Изобретателям не известен источник информации, в котором бы раскрывалась применяемая методика анализа формы сигнала, позволяющая разделять полезные сигналы импульсов фазической составляющей и артефакты, в том числе обусловленные движениями испытуемого. Отмеченное позволяет считать изобретение удовлетворяющим условию патентоспособности "изобретательский уровень". В дальнейшем изобретение поясняется описанием конкретных, но не ограничивающих изобретения, вариантов его осуществления. На фиг. 1 представлена функциональная схема устройства для регистрации кожно-гальванических реакций в соответствии с настоящим изобретением; на фиг. 2 - реальный пример формы исходного сигнала (a) и результаты его обработки устройством по изобретению (b, c, d); на фиг. 3 - аппаратная реализация блока анализа формы импульса; на фиг. 4 - временные диаграммы, поясняющие функционирование блока анализа формы; на фиг. 5 - пример реализации блока синхронизации; на фиг. 6 - пример компьютерной реализации устройства с использованием цифровой обработки сигнала; Патентуемый способ регистрации кожно-гальванической реакции удобно пояснить на примерах функционирования устройств для его реализации. Устройство для регистрации кожно-гальванической реакции (фиг.1) включает входное устройство 1, подключенное к электродам 2, 3 для присоединения к коже 4 человека. Электроды могут быть выполнены в различных вариантах, например в виде двух колец, браслета на запястье и кольца, браслета с двумя электрическими контактами. Единственное требование к ним: электроды должны обеспечивать стабильный электрический контакт с кожей испытуемого. Электроды 2, 3 подключены к стабилизированному источнику напряжения 5 через резистор R 6, а сам резистор подключен к входу дифференциального логарифмирующего усилителя 7, выход которого является выходом входного устройства 1 и подключен к входу фильтра 8 нижних частот. Выход фильтра 8 подключен к входу первого дифференциатора 9. Выход последнего подключен к входу второго дифференциатора 10, выход которого подключен ко входу 11 блока 12 анализа формы импульса. Кроме того, выход первого дифференциатора 9 подключен непосредственно к блоку 12 через вход 13, а также через фильтр 14 нижних частот к другому входу 15 блока 12 анализа формы. Сигнал с выхода упомянутого фильтра 14 нижних частот используется в блоке 12 для компенсации тонической составляющей КГР. Частота среза фильтра 8 нижних частот составляет около 1 Гц, а частота среза фильтра 14 нижних частот - около 0,03 Гц, что соответствует верхним границам полос частот фазической и тонической составляющих ЭДА. Выход блока 12 анализа формы импульса подключен к блоку регистрации 16. Изобретение может быть реализовано как аппаратным, так и программным путем. И в том, и в другом случаях анализ формы импульсов фазической составляющей ЭДА, позволяющий отделить их от артефактов движения и помех, проводится с использованием характерных параметров сигнала, которые затем сопоставляются с допустимыми пределами. К числу этих характерных параметров относятся: максимальная крутизна переднего и заднего фронтов импульса: выражается как максимальная (f MAX) и минимальная (f min) величины первой производной логарифма входного сигнала (за вычетом тренда); ширина t x импульса, определяемая как интервал времени между моментами достижения максимального и минимального значений первой производной; отношение абсолютных величин первой производной (за вычетом тренда) в максимуме и минимуме: r = |(f MAX)|/|(f min)|. Это значение г является мерой асимметрии анализируемого импульса. Таким образом, условиями отнесения анализируемого импульса к импульсу фазической составляющей ЭДА, а не к артефактам движения и помехам, являются неравенства: m 1 < f MAX < m 2 ; m 3 < f min < m 4 ; r 1 < r < r 2 ;
t 1 < t x < t 2 "
где
m 1 , m 2 - наименьшее и наибольшее допустимые значения первой производной (за вычетом тренда) в максимуме, %/с;
m 3 , m 4 - наименьшее и наибольшее допустимые значения первой производной (за вычетом тренда) в минимуме, %/с;
t 1 , t 2 - минимальное и максимальное время между экстремумами первой производной, с;
r 1 , r 2 - минимальная и максимальная величина отношения r. Установлено, что эти пределы сильно варьируют как от одного испытуемого к другому, так и для одного и того же лица при различных измерениях. Вместе с тем, при статистической обработке результатов исследований было установлено, что от 80 до 90% сигналов относятся собственно к сигналам КГР, если используются следующие числовые значения пределов: m 1 =0,5, m 2 =10, m 3 =-2, m 4 = - 0,1, t 1 =1.8, t 2 =7, r 1 =1,5, r 2 =10. На фиг. 2 представлен пример обработки реального сигнала КГР. На кривой a показана форма сигнала - U = 100ln (I изм) на выходе логарифмического усилителя 7; на кривой b - первая U", а на кривой c - вторая U" производные показанного на кривой a сигнала. Поскольку схемой предусмотрено логарифмирование сигнала, то после дифференцирования в элементах 9 и 10 численные значения производных сигнала U" и U"" имеют размерность %/с и %/с 2 соответственно. Там же на фиг. 2 кривой d представлен результат распознавания сигнала КГР на фоне тренда и помех по патентуемому изобретению. Метками S 1 и S 2 показаны сигналы, соответствующие времени появления импульсов фазической составляющей. Обращает на себя внимание тот экспериментальный факт, что внешне сходный с помеченными метками S 1 и S 2 импульс в интервале времен 20 - 26 с (заштрихованная область) - является помехой. Проверка соответствия импульса указанным четырем критериям (*) производится блоком 12 анализа формы. Величина тренда может определяться как среднее значение первой производной за интервал времени, характерный для тонической составляющей, преимущественно от 30 до 120 с. Кроме того, величина тренда может определяться как среднее значение первой производной за интервал времени 1-2 с при условии, что величины первой и второй производных меньше заданных пороговых значений в течение этого интервала времени. Во втором варианте тренд определяется более точно, однако при большом количестве помех вышеупомянутые условия могут не выполняться длительное время. В этом случае необходимо определять тренд первым способом. На фиг. 3 представлена в качестве примера аппаратная реализация блока 12. В этом варианте тренд определяется по усредненному значению первой производной за время 30 с. На фиг. 4 приведены временные диаграммы, поясняющие работу отдельных элементов этого блока. Блок 12 имеет три входа 11, 13 и 15. Вход 11, на который подается сигнал второй производной U"", является сигнальным входом двух компараторов 17 и 18, причем на опорный вход последнего подан нулевой потенциал. Входы 13 и 15 являются входами дифференциального усилителя 19, выход которого подключен к сигнальным входам схем 20 и 21 выборки и хранения. Выходы компараторов 17, 18 подключены к входам блока 22 синхронизации, соответственно к входам 23 и 24. Выход 25 блока 22 подключен к тактирующему входу схемы 20 выборки и хранения, а также к входу запуска генератора 26 пилообразного напряжения. Выход 27 подключен к тактирующему входу схемы 21 выборки и хранения. Выходы схем 20, 21 выборки и хранения, а также генератора 26 пилообразного напряжения подключены к входам схем сравнения 29, 30 и 31. Кроме того, выходы схем 20 и 21 соединены с входами аналогового делителя 32, выход которого соединен с входом схемы 33 сравнения. Выходы схем 29, 30, 31, 33 подключены к логическим входам схемы И: 34, 35, 36, 37, 38. Кроме того, выход 28 схемы 22 синхронизации подключен к стробирующему входу 39 схемы И 34. Компаратор 17 имеет вход для подачи опорного напряжения V S1 , устанавливающий пороговое значение второй производной, при превышении которого начинается анализ формы импульса. Опорные входы схем сравнения 29, 30, 31, 33 также подключены к источникам опорных напряжений (на фиг. не показаны), которые определяют допустимые пределы выбранных параметров. Индексы в наименованиях этих напряжений (V T1 , V T2 ; V M1 , V M2 ; V R1 ; V M3 , V M4) соответствуют указанным выше пределам, внутри которых должны лежать проверяемые величины (см. неравенства (*)). В случае такого соответствия на выходе 40 схемы 34 формируется короткий импульс логической "1". Функционирование блока 12 анализа формы импульсов, изображенного на фиг. 3, поясняется диаграммами фиг. 4. На диаграмме a показан пример одиночного импульса на выходе логарифмического усилителя 7. На вход блока 12 подаются следующие сигналы: сигнал первой производной - на вход 131 (диаграмма b), сигнал первой производной, усредненный за 30 с - на вход 15, и сигнал второй производной - на вход 11 (диаграмма c). Время усреднения выбрано наименьшим, соответствующим частотному диапазону тонической составляющей ЭДА. В результате этого на выходе дифференциального усилителя 19 имеется напряжение величиной U", соответствующее первой производной логарифма входного сигнала, скомпенсированной на величину тренда. Величина U" численно равна приращению напряжения за одну секунду, выраженному в %, относительно величины тонической составляющей (см. фиг. 4, b). Именно этот сигнал и анализируется остальной частью схемы. Тактирование элементов блока 12 осуществляется схемой 22 синхронизации следующим образом. Сигнал с выхода компаратора 17 представляет собой положительный перепад напряжения, возникающий при превышении напряжения с выхода дифференциатора 10 порогового значения V S1 (фиг. 4, c). Численное значение порогового напряжения V S1 в вольтах выбирается таким образом, чтобы оно соответствовало изменению второй производной по меньшей мере на 0,2%, что определено экспериментальным путем. Этот положительный перепад (фиг.4, d) является запускающим стробом для схемы 22 синхронизации. Компаратор 18 (см. фиг. 4, e) вырабатывает положительные и отрицательные перепады напряжения на своем выходе при переходе входного сигнала U"" через ноль. После запуска схемы синхронизации стробирующим импульсом с компаратора 17, по каждому фронту сигнала с компаратора 18 вырабатываются короткие стробимпульсы. Первый стробимпульс поступает на выход 25 (фиг.4, f) и подается затем на схему 20 выборки и хранения, которая фиксирует значение U" в момент достижения максимума (фиг.4, g). Второй строб (фиг.4. h) поступает с выхода 27 схемы 22 синхронизации на стробирующий вход второй схемы 21 выборки и хранения, которая фиксирует значение U" в минимуме (фиг.4, i). Первый же импульс подается также на вход генератора 26 пилообразного напряжения, который вырабатывает линейно нарастающее напряжение после прихода стробимпульса (фиг. 4, j). Сигнал с выхода генератора 26 пилообразного напряжения подается на вход схемы 29 сравнения. Выходной сигнал со схемы 20 поступает на вход схемы сравнения 30. Сигнал с выхода схемы 21 подается на схему 31. Кроме того, сигналы с выходов схем 20, 21 поступают на входы А и В аналогового делителя 32. Сигнал с выхода аналогового делителя 32, пропорциональный отношению входных напряжений U A /U B , подается на вход схемы 33 сравнения. Сигналы с выходов всех схем сравнения 29, 30, 31 и 33 подаются на входы 35, 36, 37, 38 схемы 34 логического И, которая тактируется стробимпульсом (см. фиг. 4, k), подаваемым на стробирующий вход 39 с выхода 28 схемы 22. В результате на выходе 40 схемы 34 образуется импульс логической "1" в случае, если на все четыре входа 35-38 подан сигнал логической "1" во время прихода стробимпульса на вход 39, положительный фронт которого соответствует отрицательному фронту на выходе 28. Схемы сравнения (поз. 29-31,33) могут быть реализованы любым из традиционных путей. Они вырабатывают сигнал логической "1" в том случае, если входное напряжение лежит в диапазоне, задаваемом двумя опорными напряжениями. Все внутренние стробирующие сигналы обеспечиваются схемой 22 синхронизации, которая может быть реализована, например, следующим образом (см. фиг. 5). Схема 22 имеет два входа: 23 и 24. Вход 23 подключен к S-входу RS-триггера 41, который переводится в единичное состояние положительным фронтом с компаратора 17 (фиг.4, d), т.е. при превышении значением второй производной U"" порогового уровня. Выход Q триггера 41 соединен со входами схем логического И 42 и 43, разрешая таким образом проходить через них сигналам с триггера 44 и инвертора 45. На вход 24 поступает сигнал с компаратора 18 (фиг.4, e). Отрицательный перепад сигнала с входа 24 инвертируется инвертором 45 и через схему 42 поступает на другой одновибратор 46, который вырабатывает стробирующий импульс на выходе 25 (см. фиг.4. h). Положительный перепад с входа 24 переводит триггер 44 в единичное состояние, что в свою очередь запускает одновибратор 47, который вырабатывает короткий положительный импульс. Этот стробирующий импульс подается на выход 27 схемы синхронизации (фиг. 4, f). Этот же импульс подается на вход инвертора 48, выход которого соединен с входом одновибратора 49. Таким образом схема 49 запускается задним фронтом импульса с выхода 47 и вырабатывает третий короткий стробирующий импульс (см. фиг.4, k). Этот импульс подается на выход 28, а также используется для сброса RS-триггеров 41 и 44, для чего подается на их R-входы. После прохождения этого импульса схема 22 синхронизации вновь готова к работе до прихода очередного сигнала на вход 23. В результате описанного выше функционирования схемы 22 синхронизации на выходе 40 блока 12 анализа формы (см. фиг.З) вырабатывается короткий импульс логической "1" при условии, что анализируемые параметры лежат в заданных пределах. Следует отметить, что на фиг.2, d метками S 1 и S 2 поименованы как раз указанные импульсы; для наглядности они наложены на графики первой и второй производных анализируемого сигнала. Выше описана аппаратная реализация средств выделения сигналов тонической составляющей и импульсов фазической составляющей. Вместе с тем, выявление полезного импульса фазической составляющей на фоне шумов и АД может быть осуществлено и программным путем. На фиг. 6 показан пример компьютерной реализации устройства с использованием цифровой обработки сигнала. Устройство включает входное устройство 1, подключенное к электродам 2, 3 для присоединения к коже человека 4. Электроды подключены через резистор R6 к источнику 5 стабилизированного постоянного опорного напряжения. Сигнал с резистора 6 подается на входное устройство - операционный усилитель 50 с высоким входным и низким выходным импедансами, работающий в линейном режиме. С выхода усилителя 50 сигнал поступает на вход стандартного 16- разрядного аналого-цифрового преобразователя 51 (АЦП), установленного в слот расширения IBM-совместимого компьютера 52. Логарифмирование и весь дальнейший анализ сигнала производится цифровым образом. С использованием преобразованных АЦП значений тока, протекающего между электродами (I изм)> вычисляются первая и вторая производные от величины 100ln(I изм) Вычислять значения первой производной необходимо с поправкой на тренд. Величина тренда определяется как среднее значение первой производной за время от 30 до 120 с. Далее производится определение принадлежности анализируемого импульса сигналу КГР (проверка выполнения условий (*)). При удовлетворении параметров формы установленным критериям относят упомянутый импульс к импульсам КГР, а при невыполнении - относят к артефактам. Описанные способ и устройство могут быть использованы при различных медицинских и психофизиологических исследованиях, где одним из измеряемых параметров является электрическая проводимость кожи. Это, например: тренажеры с обратной связью по кожному сопротивлению для выработки навыков релаксации и концентрации внимания, системы профотбора, и т.д.. Кроме того, патентуемое изобретение может быть применено, например, для определения уровня бодрствования водителя транспортного средства в реальных условиях, характеризующихся наличием многочисленных помех. Реализация устройств может быть легко осуществлена на стандартной элементной базе. Вариант устройства с цифровой обработкой сигнала может быть реализован на основе любого персонального компьютера, а также с использованием любого микроконтроллера или однокристальной микро-ЭВМ. Связь измерительной части и устройства обработки сигнала (как аналоговой, так и цифровой) может быть осуществлена любым из известных способов, как по проводному каналу, так и беспроводным способом, например, по радиоканалу или ИК-каналу. Существует много различных вариантов выполнения устройства в зависимости от умения и профессиональных знаний, а также используемой элементной базы, поэтому приведенные схемы не должны служить ограничениями при реализации изобретения.

Формула изобретения

1. Способ регистрации кожно-гальванических реакций, включающий закрепление на теле человека двух электродов, подачу электрического напряжения на них, регистрацию изменения во времени электрического тока, протекающего между электродами и фиксацию импульсов тока в полосе частот физической составляющей электродермальной активности, отличающийся тем, что анализируют форму каждого импульса в последовательности импульсов в полосе частот физической составляющей, для чего регистрируют сигнал в виде производной по времени от логарифма численного значения электрического тока, определяют величину тренда, обусловленного изменениями сигнала в полосе частот тонической составляющей электродермальной активности, и корректируют величину первой производной, вычитая из нее величину тренда, регистрируют вторую производную по времени от логарифма численного значения электрического тока, определяют начало импульса упомянутого сигнала по моменту превышения второй производной пороговой величины, а затем определяют соответствие формы импульса установленным критериям и при наличии такого соответствия относят анализируемый импульс к импульсам физической составляющей, а при отсутствии - относят к артефактам. 2. Способ по п.1, отличающийся тем, что величину тренда определяют как среднее значение первой производной за интервал времени, преимущественно от 30 до 120 с. 3. Способ по п.1, отличающийся тем, что величину тренда определяют как среднее значение первой производной за интервал времени 1 - 2 с, при условии, что величины первой и второй производных меньше заданных пороговых значений в течение этого интервала времени. 4. Способ по любому из пп.1 - 3, отличающийся тем, что временем прихода импульса первой производной считают момент, когда вторая производная превышает пороговое значение по меньшей мере на 0,2%. 5. Способ по любому из пп.1 - 4, отличающийся тем, что при определении формы импульса регистрируют значения максимальной f m a x и минимальной f m i n величин первой производной за вычетом величины тренда, их отношение r, интервал времени t x между минимумом и максимумом первой производной, при этом моменты достижения максимальной и минимальной величин первой производной определяют по моменту смены знака второй производной. 6. Способ по п.5, отличающийся тем, что критериями принадлежности анализируемого импульса к сигналу физической составляющей электродермальной активности являются неравенства
0,5 < f m a x < 10;
-2 < f m i n < -0,1;
1,8 < t x < 7;
1,5 < r < 10. 7. Устройство для регистрации кожно-гальванических реакций, содержащее электроды со средствами их крепления, подключенные к входному устройству, средства для подавления импульсных помех, средства для выделения сигнала в полосе частот физической составляющей электродермальной активности, средства для детектирования импульсов физической составляющей, блок регистрации, отличающееся тем, что средства выделения сигнала в полосе частот физической составляющей, средства для подавления импульсных помех и средства для детектирования импульсов физической составляющей выполнены в виде последовательно подключенных к входному устройству фильтра нижних частот, блока преобразования входного сигнала в первую и вторую производные по времени и блока анализа формы импульсов, при этом выход последнего подключен к входу блока регистрации. 8. Устройство по п.7, отличающееся тем, что входное устройство представляет собой стабилизированный источник электрического напряжения и резистор, подключенные последовательно к электродам, логарифмирующий усилитель с дифференциальным входным каскадом, при этом резистор шунтирует входы логарифмирующего усилителя. 9. Устройство по п.7 или 8, отличающееся тем, что блок преобразования входного сигнала в первую и вторую производные по времени выполнен в виде первого и второго дифференциаторов и фильтра нижних частот, при этом выход первого дифференциаторв подключен к входам второго дифференциатора и фильтра нижних частот, выходы которых являются выходами блока. 10. Устройство по любому из пп.7 - 9, отличающееся тем, что блок анализа формы включает средства для определения максимальной скорости изменения сигнала на переднем и заднем фронтах анализируемого импульса, средства для определения асимметрии его формы, средства для определения ширины импульса, средства для сравнения упомянутых величин с установленными пределами для выработки сигнала принадлежности анализируемого импульса сигналу физической составляющей электродермальной активности. 11. Устройство по п.7, отличающееся тем, что фильтр нижних частот, блок преобразования входного сигнала в первую и вторую производные по времени и блок анализа формы импульсов выполнены на базе компьютера, подключенного к входному устройству через аналого-цифровой преобразователь.

Исследованиями физиологов в конце 19-го века было установлено, что между двумя электродами, непосредственно приложенными к коже, существует разность потенциалов, обусловленная местным обменом веществ, состоянием сосудов и гидрофильностью кожи. Участки кожи, богатые потовыми железами, электроотрицательны, а бедные ими – электроположительны. Под влиянием боли, психического напряжения, возбуждения анализаторов разность потенциалов изменятся. Этот эффект открыт русским физиологом И.Р. Тархановым в 1889 г. Обычно между электродами, находящимися на расстоянии 1 см друг от друга, разность потенциалов Δφ составляет 10 – 20 мВ. Под влиянием раздражителей Δφ растёт до десятков и сотни милливольт. Для снятия потенциалов применяются электроды из цинка или серебра и имеют форму дисков диаметром ~ 10 мм. Для лучшего контакта используется электропроводная паста. Ранее паста изготавливалась из каолина и насыщенного раствора ZnS в воде. В настоящее время используется паста промышленного изготовления. Схема измерений представлена на рисунке. Видно, что используется метод компенсации. Для измерения замыкается ключ 1. Ключ 2 включён произвольным образом. Затем реостатом сводят до нуля ток, показанный амперметром в измерительной цепи. Если не получается, делают переключение ключа 2. Потом подают раздражитель объекта и через латентный период (который составляет 1 – 3 с) регистрируют кожно-гальваническую реакцию на раздражитель. Такая процедура называется кожно-гальванической реакцией по Тарханову.

Кожно-гальваническую реакцию можно регистрировать по методике французского врача К. Фере. По этой методике измеряется электрическое сопротивление между двумя точками кожи. Под действием раздражителя электрическое сопротивление кожи меняется по истечении латентного времени. Оба метода дают идентичные результаты при регистрации кожно-гальванической реакции (КГР).

Информативные возможности КГР.

Электропроводность кожи зависит от состояния вегетативной нервной системы. Факторы, определяющие электропроводность - это деятельность потовых желез, проницаемость биологических мембран, гидрофильность кожи, кровоснабжение. Воздействия, под влиянием которых меняется электропроводность: болевые ощущения, нервно-психическое напряжение, афферентные стимулы (свет, звук). Изменение электросопротивления кожи обозначается как КГР, поскольку оно сопровождается изменением гальванического потенциала кожи. Она проводится на постоянном напряжении.

Кожногальванические реакции в высшей степени неспецифичны, так как они могут быть связаны как со сложными нейро-эндокринными сдвигами, так и с изменениями информационных потоков в центральной нервной системе. При возбуждении симпатической системы сопротивление кожи уменьшается (или увеличивается отрицательный потенциал электрода). При парасимпатических реакциях происходит наоборот.


У лётчиков при полёте по параболе Кеплера наблюдались колебания электрических сопротивлений, вызванные действием перегрузок, перемежающихся с состояниями невесомости. У шизофреников наблюдаются спонтанные кожно-гальванические реакции. Наряду с этими сравнительно быстрыми реакциями имеются также медленные изменения потенциалов (часовые, суточные). Во сне сопротивление растёт. При возбуждении вестибулярного аппарата сопротивление уменьшается. КГР считается показателем бдительности и сознательности пилота. Этим методом регистрируются эмоции – возбуждение, испуг, страх и т.п.

Метод КГР применялся на космических кораблях в ходе медицинских исследований и контроля состояния космонавтов. При полётах на «Востоке 3» и «Востоке 4» этим методом регистрировались медленные колебания кожногальванического потенциала, а на «Востоке 5» и «Востоке 6» - быстрые колебания. У данного метода имеются также определённые сложности в реализации. Они связаны с ростом электрического сопротивления за счёт нарушения контакта с кожей и за счёт поляризационных явлений. У пилотов и космонавтов электроды для регистрации КГР накладывают на стопу – тыльную и подошвенную части. Закрепляют электроды эластичной повязки. Неспецифичность кожно-гальванических реакций диктует необходимость их постоянного сопоставления с другими физиологическими показателями, с записью радиопереговоров и с телевизионным изображением. Например, на записи кожно-гальванической реакции В.В. Терешковой сигнал совпадал с её пробуждением от сна, которое контролировалось по открытию глаз. Последнее регистрировалось методом электроокулографии (ЭОГ).

Сферы практического применения метода КГР В психологических и психофизиологических исследованиях, требующих интегративной оценки функционального состояния; Для решения различных прикладных задач в психологии труда, психофизиологии, инженерной психологии и др., связанных с количественной оценкой воздействия разного рода факторов на человека;


Сферы практического применения метода КГР Для ускорения процесса обучения различным методам саморегуляции психофункционального состояния;методам саморегуляции психофункционального состояния Для исследований, связанных с оптимизацией способов решения человеком проблемных моментов и проблемных ситуаций во время выполнения профессиональной деятельности.




Применение параметров КГР Для количественной оценки всех видов эмоциональных проявлений, наблюдаемых как в результате специальных воздействий в экспериментах, так и в качестве показателя субъективных переживаний; В качестве параметра энергетической обеспеченности как всего организма в целом, так и отдельных систем.


Потовыделительная модель КГР Процесс проводимости электрического тока через кожу определяется электрической проводимостью жидкостей (потовых выделений и гидратации верхнего слоя), а количественно электрические параметры кожи определяются количественными параметрами выделения жидкостей.


Потовыделительная модель КГР Качественные изменения состава жидкости в коже при этом не рассматриваются. При активации человека под воздействием импульсации в нервных окончаниях верхних слоев кожи происходит усиление интенсивности потовыделении в потовых железах.


Потовыделительная модель КГР Быстрые (фазические) изменения сигнала КГР отражают увеличение электрокожной проводимости и уменьшение электрокожного сопротивления. Более медленные тонические изменения уровня сигнала КГР определяются интенсивностью потовыделении и степенью гидратации (насыщенности верхних слоев кожи жидкими электролитами).


Ионная модель КГР (Суходоев В.В.) В обычном функциональном состоянии значительная часть ионов тканей находится в активном (свободном) состоянии, что обеспечивает возможность выполнения кожей ее функции по энергетическому обмену тела человека с внешней средой.


Ионная модель КГР (Суходоев В.В.) При увеличении активации (за счет нервной импульсации) увеличивается активность ионов электролитов и уменьшается энергетический потенциал оболочек клеток. Ионы на оболочках клеток переходят из свободного в связанное состояние и увеличивают проводимость кожи, т.е. наблюдается реакция активации в виде фазической КГР.


Ионная модель КГР При уменьшении энергетического воздействия от центральной нервной системы автоматически включаются процессы перехода ионов в более устойчивое связанное состояние за счет их группировки на оболочках клеток (часть энергии ионов при этом передается клеткам на внутриклеточные процессы, связанные с накоплением энергии на клеточном уровне).


Три основных типа фоновой КГР (Л.Б. Ермолаева-Томина, 1965) Стабильный (в фоновых КГР спонтанные колебания полностью отсутствуют); Стабильно-лабильный (в фоновых КГР регистрируются отдельные спонтанные колебания); Лабильный (даже при отсутствии внешних стимулов непрерывно регистрируются спонтанные колебания).


Кожно-гальваническая реактивность Кожно-гальваническая реактивность- легкость, с которой развиваются реакции на воздействие. По степени реактивности всех людей делят на низко реактивных (реакции не возникают даже на стимулы значительной интенсивности) и высоко реактивных (любое, даже самое незначительное внешнее воздействие вызывает интенсивную КГР). Имеются промежуточные типы. Высокореактивные люди активны, возбудимы, тревожны, эгоцентричны, обладают высокоразвитым воображением.Низкореактивные люди вялые, спокойные, со склонностью к депрессии.


Скорость угасания КГР и типологические свойства нервной системы Скорость угасания КГР при повторении раздражителя более медленная у лиц с высокой динамичностью возбуждения; у лиц с высокой динамичностью торможения наблюдается быстрое угасание КГР по мере повторения раздражителя.


Метод определения силы нервной системы (по В.И. Рождественской, 1969; В.С. Мерлину, Э.И.Маствилискеру, 1971) Регистрация вызванной КГР на повторяющиеся (30) предъявления раздражителя. Реакция на первые пять предъявлений не учитывается, т.к. расценивается как ориентировочная. Сравниваются средние амплитуды КГР на 3 вторых (с 6 по 8) и 3 последних предъявления стимула. Показателем силы- слабости нервной системы является процентное соотношение логарифмов средней амплитуды. Чем выше значение коэффициента, тем выше сила нервной системы.


Значения амплитуды КГР В нормальном состоянии амплитуда КГР составляет мВ/см; При нарастании возбуждения амплитуда КГР возрастает до 100 мВ/см.


КГР-БОС тренинг Являясь коррелятором психоэмоционального состояния, КГР широко используется в контуре БОС при лечении заболеваний ЦНС, неврозов, фобий, депрессивных состояний, различных эмоциональных расстройств, повышения психической устойчивости в стрессогенных условиях. Устраняя избыточную вегетативную активацию в ответ на внешние факторы, БОС - обучение по КГР практически здоровых людей позволяет снизить психофизиологическую цену деятельности и улучшить ее качество особенно в ситуациях высокой ответственности, дефицита времени, ин-формации и средств, а также в условиях вероятной опасности и помех.




КГР-БОС тренинг Цель процедуры. Формирование у пациента стереотипа торможения реакции вегетативной активации в ответ на предъявление неожиданных звуковых раздражителей. Показания и противопоказания. Рекомендуется для пациентов с избыточной вегетативной активацией в ответ на предъявление незначимого акустического раздражителя. Они мо-гут быть использованы на завершающем этапе в курсе обучения навыкам релаксации в условиях воздействия мешающих раздражителей. Кроме того, нормализация скорости угашения ориентировочной реакции является одним из вспомогательных этапов в курсе повышения психической стрессоустойчивости. Этот вид тренинга противопоказан при острых психотических состояниях, неврозоподобных последствиях травмы головы, нейроинфекциях и других органических поражениях головного мозга.


Специфика применения При проведении процедуры в помещении должна поддерживаться постоянная температура 20…24 С° и не должно быть посторонних звуков. Не рекомендуется начинать тренировку ранее, чем через два часа после плотной еды. Рука с электродами свободно лежит на подлокотнике кресла, активные движения, по возможности, должны быть исключены. В некоторых случаях, при одинаковых раздражителях, может наблюдаться разница в амплитудах реакций на правой и левой руках. В этом случае следует использовать сторону с большими значениями амплитуды.


Сценарий БОС-тренинга КГР «Ознакомительный» Идея сценария. Контролируя динамику собственной КГР при эпизодическом предъявлении неприятных звуковых раздражителей, пациент находит и закрепляет навык реагирования, который не сопровождается всплесками КГР и, соответственно, избыточной вегетативной активацией. Специфика сценария. В качестве модели стрессогенных воздействий используются акустические сигналы повышенной громкости и субъективно неприятные для пациента. Моменты их предъявления формируются случайным образом с помощью генератора сигналов.


Сценарий БОС-тренинга КГР «Ознакомительный» Контролируемые параметры и конфигурация съема. В качестве контролируемого параметра используется абсолютное значение КГР (М КГР). Регистрация КГР осуществляется с ладонной поверхности дистальных фаланг указательного и среднего пальцев одной из рук. Перед наложением электродов кожа обрабатывается 70% раствором спирта. На пальце, в области контакта с рабочей частью электрода, не должно быть ссадин и других повреждений кожи. При их наличии можно использовать другой палец или переместить электрод на среднюю фалангу того же пальца. Крепление электродов не должно быть тугим.


Описание процедуры «Повышение стрессоустойчивости» Цель процедуры. Используется для освоения и закрепления навыков снижения выраженности вегетативных проявлений и эмоциональной напряженности при воздействии стрессогенных факторов. Показания и противопоказания. Рекомендуются для функционально-тренировочной терапии больных неврозом с тревожно–фобической симптоматикой, улучшения психической адаптации, повышения психической устойчивости человека к различным стрессогенным факторам. Рекомендуется также для преодоления внутренней психической напряженности, ощущения неопределенной тревоги и беспричинного страха. Процедура может быть использована практически здоровыми людьми, чья деятельность происходит в условиях повышенной ответственности, дефицита времени, вероятной опасности.


Описание процедуры «Повышение стрессоустойчивости» Процедуры противопоказаны при острых психотических состояниях, неврозоподобных последствиях травмы головы, нейроинфекциях и других органических поражениях головного мозга. Следует учитывать, что, как и при использовании любых типов БОС, эффективность БОС по КГР снижена у боль-ных с интеллектуально-мнестическими нарушения-ми. Поэтому при наличии данной патологии выра-женной степени необходимо рассматривать вопрос о целесообразности назначения описываемого ме-тода. Рекомендуется для пациентов с избыточной вегетативной активацией в ответ на предъявление незначимого акустического раздражителя.


Описание процедуры «Повышение стрессоустойчивости» Специфика применения. Для провокации у пациента состояния тревожного ожидания используются электрокожные стимулы (ЭС), формируемые с помощью электростимулятора. Обязателен предварительный инструктаж, согласие пациента и индивидуальный подбор интенсивности элекростимула. Фетровые вкладыши электродов электростимулятора должны быть хорошо смочены водопроводной водой. По мере их высыхания интенсивность стимуляции снижается, поэтому, если тренировка продолжается более 30 минут, воспользуйтесь кнопкой «Пауза» и смочите их дополнительно. В одной процедуре не рекомендуется использование более 15 ЭС.


Описание процедуры «Повышение стрессоустойчивости» Они могут быть использованы на завершающем этапе в курсе обучения навыкам релаксации в условиях воздействия мешающих раздражителей. Кроме того, нормализация скорости угашения ориентировочной реакции является одним из вспомогательных этапов в курсе повышения психической стрессоустойчивости.


Литература 1) Дементиенко В.В., Дорохов В.Б., Коренева Л.Г. и др. Гипотеза о природе элекродермальных явлений // Физиология человека T C) Ивонин А.А., Попова Е.И., Шуваев В.Т. и др. Метод поведенческой психотерапии с использованием биологической обратной связи по кожно- гальванической реакции (КГР-БОС) при лечении больных невротическими фобическими синдромами // Биологическая обратная связь, 2000, 1, стр) Федотчев А. И. Адаптивное биоуправление с обратной связью и контроль функционального состояния человека / Ин-т биофизики клетки РАН // Успехи физиологических наук Т. 33. N 3. С

Кожно - гальваническая реакция (КГР) - биоэлектрическая реакция, регистрируемая с поверхности кожи. Синонимы: психогалъванический рефлекс, электрическая активность кожи (ЭАК). КГР рассматривается как компонент ориентировочного рефлекса, оборонительных, эмоциональных и др. реакций организма, связанных с симпатической иннервацией, мобилизацией адаптационнотрофических ресурсов и т.д., и представляет собой результат активности потовых желез. КГР можно регистрировать с любого участка кожи, но лучше всего - с пальцев и кистей рук, подошв ног.

Широкому применению КГР в исследовательских и практических целях положили начало французский невропатолог К. Фере, обнаруживший, что при пропускании слабого тока через предплечье происходят изменения в электрическом сопротивлении кожи (1888), и российский физиолог И. Р. Тарханов (Тархнишвили, Тархан-Моурави), открывший кожный потенциал и его изменение при внутренних переживаниях, а также в ответ на сенсорное раздражение (1889). Эти открытия легли в основу двух главных методов регистрации КГР - экзосоматического (измерение сопротивления кожи) и эндосоматического (измерение электрических потенциалов самой кожи). Позже оказалось, что методы Фере и Тарханова дают неодинаковые результаты.

К. Юнг и Ф. Петерсон (1907) были одними из первых, кто показал связь КГР и степени эмоционального переживания. В КГР Юнг видел объективное физиологическое «окно» в бессознательные процессы. КГР относится к числу наиболее распространенных показателей, что объясняется легкостью ее регистрации и измерения. Она успешно используется для контроля за состоянием человека при выполнении разных видов деятельности (диагностике функционального состояния), в исследованиях эмоционально-волевой сферы и интеллектуальной деятельности; является одним из показателей в детекции лжи. Обнаружены довольно интересные и разнообразные факты: более выраженное повышение КГР в ответ на более смешные шутки (Е. Линде); соответствие пиков КГР стрессогенным эпизодам фильма (Р. Лазарус и др.); более значительное повышение электропроводимости кожи при эмоции страха, чем при эмоции гнева (Э. Экс); увеличение КГР при восприятии непристойных слов (Э. Мак-Гиннес) и пр. Все эти факты свидетельствуют о высокой чувствительности показателей КГР. Одно время в КГР видели нечто вроде универсального ключика чуть ли не ко всем психологическим проблемам (здесь сыграли роль «магия объективности» и упрощенное представление, что эмоциональные состояния могут быть описаны с помощью только одного параметра, а именно возбуждения), однако это оказалось очередной научной утопией. Об ограниченных возможностях КГР, как психофизиологического индикатора, свидетельствуют, в частности, данные Г. Джонса (1950) о том, что в некоторых пределах существует обратное соотношение между величиной КГР и возбуждением, проявляющимся в поведении. Кроме того, в исследованиях по эффективности рекламы было обнаружено, что показатели КГР при восприятии рекламы далеко не однозначно связаны с поведенческими реакциями.

В последнее время многие психофизиологи выступают против самого термина «КГР» и заменяют его более точным «ЭАК» (электрическая активность кожи ), объединяющим целый ряд показателей, изменяющихся в зависимости от характера раздражителя и внутреннего состояния испытуемого. К показателям ЭАК относятся уровень потенциала кожи (УПК, или SPL), реакция потенциала кожи (РПК, или SPR), спонтанная реакция потенциала кожи (СРПК, или SSPR), уровень сопротивления кожи (УСК, или SRL), реакция сопротивления кожи (РСК, или SRR), уровень проводимости кожи (УПрК, или SCL) и пр. При этом «уровень» означает тоническую активность (относительно длительные состояния), «реакция» - фазическую активность (короткие, в течение нескольких секунд, ответы на раздражители) и «спонтанная» - реакции, трудно связываемые с каким-либо раздражителем. Уровень тонического электрокожного сопротивления используется как показатель функционального состояния Ц. н. с. В расслабленном состоянии, напр. во сне, сопротивление кожи повышается, а при высоком уровне активации понижается. Фазические показатели остро реагируют на состояние напряжения, тревоги, усиление мыслительной деятельности.

Физиология ЦНС лекция №4

Психофизиологические методы исследования:

Артериальное давление, частота сердечных сокращений, ЭКГ, частота дыхания,

Электромиография, электроэнцефалография, кожногальваническая реакция,

Пупиллометрия.

Доказательство влияний на психологическое состояние человека уровня артериального давления. Отражение эмоционального состояния в электрокардиограмме. Кожно-гальваническая реакция, как отражение процессов на уровне сознательного и бессознательного.

Все эти методы используются и физиологами, но в основном физиологи используют инвазивные методы.

Физиолог Лючиани , изучал функции мозжечка, удаляя у собак различные его части, наблюдая, как меняется двигательное поведение собаки. Пользуясь результатами исследований Лючиани, по признакам изменения двигательной активности человека, врач может определить, какой участок в мозжечке поврежден.

Физиолог Гольф посвятил свою работу коре больших полушарий. Считалось, что кора больших полушарий отвечает буквально за все. Гольфу удалось получить безкорковую собаку, она не могла ходить, она была слепой, она была глухой, но все вегетативные функции у нее сохранились. Чем было доказано что без коры животное может существовать.

Дальше появилась возможность в мозг вводить электроды, с помощью которых можно было разрушать или раздражать отдельные структуры головного мозга более точно. Если раздражать хвостатое ядро, то ярость у животного полностью исчезает.

Психофизиология – это наука все данные, которой были получены на человеке, потому, что здесь используются неинвазивные методы. Первым психофизиологом считается Гален (129 год до н. э.), поскольку он описал такую ситуацию, у него была больная с расстройствами желудочно – кишечного тракта, лечить ее не получалось, но однажды Гален понял, что все расстройства у нее были от безответной любви.

Что дают психофизиологические методы исследования?

Психофизиология изучает физиологические процессы при различных психологических состояниях, чтобы по этим физиологическим показателям проникнуть в суть психических процессов как на уровне сознательного, так и на уровне бессознательного.

Примеры использования физиологических показателей:

В древнем Китае подозреваемому давалась горсть сухого риса, и смотрели, сможет он его прожевать и проглотить или нет. Считалось, что если человек виновен, у него сохнет во рту, и рис он проглотить не сможет. У англосаксов давали жевать корку сухого хлеба.

Был криминалист Лонг Бро ____, первый пришел к выводу, что по повышению артериального давления можно доказать виновность человека.

Почему все эти показатели действительно отражают эмоциональное состояние человека?

Во-первых, кровяное давление . Есть животные, у которых, кровеносная система не замкнута, кровь прямо изливается из сосудов в полость тела и затем снова возвращается в сердце. Очень долго считалось, что у нас кровеносная система тоже не замкнута. В 1628 году Гарвей провозгласил, что кровеносная система человека замкнута, доказать он этого не мог, но благодаря его авторитету это было принято. Замкнутая кровеносная система: сердце, артерии, артериолы, капилляры, венулы, вены, и опять сердце, кровь все время течет по сосудам. Если вскрывается тело человека, то кровь только в венах, а в артериях воздух. Артерии – хранящие воздух сосуды. Десять лет спустя Мальпиги, с помощью микроскопа увидел капилляры.

И раз это замкнутая система, значит кровь должна течь под давлением. Очень захотелось измерить кровяное давление. Здесь проявил интерес монах Стэнфин Хелз у него была любимая лошадь, на ней он впервые измерил кровяное давление. Он сделал такую систему: в сосуд на шее лошади вставлялась тоненькая трубочка, которая соединялась горлом гуся с высокой стеклянной трубкой, кровь в которой поднималась на 205 см.

Таким же образом померили у человека давление, оказалось кровь поднимается на 150 см.

Кровяное давление тесно связано с работой сердца, если у нас учащается работа сердца, то кровяное давление поднимается.

У спортсменов кровяное давление поднимается перед стартом, из-за волнения учащается работа сердца. Во время тренировок или соревнований кровяное давление спортсменов не поднимается, значит его повышение не связано с физическими нагрузками.

Повышение кровяного давления у спортсменов разных видов спорта:

Электрокордиограмма . Сердечная стенка состоит из мышечных волокон, для того, чтобы они сокращались, в них возникает потенциал действия. Этот потенциал действия суммируется и образует вокруг сердца электрическое поле, которое выходит на поверхность. Регистрируется электрокардиограмма:

Р – отражает возбуждение предсердий

Q, R, S – возбуждение желудочков

Т – указывает на то, что возбуждение уходит из сердца

Каким образом можно изучать влияние каких-то факторов на частоту работы сердца, кровяное давление. Это эксперимент с созданием экстремальной ситуацией, для человека такую ситуацию создать довольно трудно. Поэтому используется мониторирование. Человеку дается компактный кардиограф, подсоединяются электроды, с которым он живет несколько суток и ведет дневник. Затем сравнивают, как изменялась электрокардиограмма в разных жизненных ситуациях.

Пример №1: Научный сотрудник, ему 35 лет, у него нормальная кардиограмма

Перед докладом частота сердечных сокращений: 60-80 в минуту;

Во время доклада частота сердечных сокращений 106 в минуту;

Доклад заканчивается, а выводы он сделать не успевает, частота сердечных сокращений 130 в минуту, изменилась кардиограмма, увеличился зубец «С», что говорит об ишемическом состояние в сердечной мышце.

Пример №2 : профессор, ему 55 лет,

До лекции частота сердечных сокращений – 85 в минуту;

Во время лекции частота сердечных сокращений– 96 в минуту;

Конец лекции на кардиограмме возникает ишемический участок, достаточно серьезный.

Совсем катастрофическая ситуация была зарегистрирована, когда служащий пошел на очень неприятный разговор к начальству, у него возникло не только ишемическое состояние, но и аритмия в сердце.

Исследовались курсанты школы милиции:

У них изменялась частота сердечных сокращений во время показа жестокого фильма.

Первая группа : до фильма – 60 в минуту, во время – 100 в минуту, и через 10 минут восстановилась;

Вторая группа: до фильма –60 в минуту, во время – 176, через 10 минут частота сердечных сокращений не восстановилась;

Это говорит о том, что у второй группы курсантов повышенный уровень тревожности, который неблагоприятно сказался на работе сердца.

Метод Криперина – умножение двухзначных чисел:

Были обследованы 124 студента, из них 45 – здоровые, первая группа, 79 – пограничная стадия артериальной гипертонии (немного повышено артериальное давление), вторая группа.

Числа надо было умножить за 10 минут, применялась фотостимуляция.

Измерялось артериальное давление АД, кроме того измерялся капиллярный кровоток ККТ, в ногтевом ложе и уровень кислорода в крови РО2.

Первая группа, совершила 85 мат. Действий, из которых было 13% ошибок:

Вторая группа, совершила 58 мат. действий, из которых 33,9% ошибок:

Вывод: Они не способны выполнить эту задачу, или у них не так работает кровеносная система, и в результате они не могут выполнить это задание.

Психологи должны учитывать физиологическое состояние человека, при проведении своих тестов.

На кровяное давление влияет симпатическая нервная система, медиаторы адреналин и норадреналин. В разных эмоционально значимых ситуациях выделяется или норадреналин, или адреналин, которые по-разному действуют на частоту сердечных сокращений и артериальное давление.

Если мы возьмем страх и ярость – два сильных эмоциональных переживания.

Когда мы мерим давление, у нас получается две цифры:

Верхнее – это во время сокращения сердца (сокращение – систала) – систальческое давление;

Нижнее – диасталическое давление.

При страхе систалическое давление повышается, частота сердечных сокращений увеличивается, диастолическое давление не меняется, выбрасывается адреналин.

Во время ярости выделяется норадреналин, не меняется систалическое давление, а диастолическое давление повышается, частота сердечных сокращений урежается.

Электромиография – регистрация потенциалов, которые возникают в скелетных мышцах. Чем сильнее сокращается мышца, тем большей частоты в ней возникает разряд, большая амплитуда возникает в потенциалах скелетной мышцы. Скелетная мускулатура включается в ответ на эмоционально значимые сигналы. Напряжение скелетных мышц исследуется у диспетчеров, когда они заступают на пост. У них измеряют, насколько высоко поднимается напряжение скелетных мышц, при сжимании рычага, когда диспетчер следит за самолетом.

Электроэнцефолограмма

Впервые ее зарегистрировали в 1875 году. Зарегистрировали потенциалы от мозга кролика, когда на него направили мигающий свет, решили, что это отношений к функциям мозга не имеет. Бергер, был психологом, считал, что мозг такое мощное образование в котором тоже должны возникать потенциалы, он впервые зарегистрировал электроэнцефолограмму на своем сыне. Мозг может давать такое же электрическое поле, как и сердце. Скептики сравнивали ее с фабрикой, где работают станки, и по шуму мы пытаемся определить что производят на этой фабрике. Эдриан – лорд и физиолог,под его руководством стали строить энцефолографы. Сейчас энцефолограмму обрабатывают на компьютере, только он может достоверно вычислить, какие ритмы преобладают в энцефолограмме.

Бета-ритмическая активность регистрируется от мозга любого человека, который находится в состоянии бодрствования, с открытыми глазами, от 13-30 в секунду.

Бета-ритм рождается в лобной коре.

Стоит человеку просто закрыть глаза, электроэнцефолограмма меняется на глазах, за счет исключения зрительного потока. Появляется альфа-ритм от 8-13 в секунду. Альфа-ритм рождается в затылочной коре. Альфа-ритм интересен тем, что если мы человека с закрытыми глазами просим мысленно воспроизвести любую картину – происходит депрессия альфа-ритма и он сменяется бета-ритмом. Такая депрессия проявляется не у всех людей, некоторым трудно сосредоточиться. Альфа-ритм отражает некоторые особенности характера человека, способность сосредоточиться, отстраниться от окружающей среды. Если человек спит возникает дельта-ритм от 1-4 в секунду. Иногда человек приходит к врачу и говорит, что не может спать, у него регистрируется дельта-ритм, значит он действительно спит, и причину надо искать в другом.

5-7 импульсов в секунду у человека в чистом виде не регистрируется, это тета-ритм, но если он регистрируется, то говорит о повышенной тревожности человека.

При изучении препарата, если увеличивается доля альфа-ритм, значит препарат имеет благотворное влияние, если доля тете-ритма, то надо что-то менять в препарате.

При шизофрении электроэнцефолограмма может быть нормальной и ничего не дает.

При эпилепсии она необходима. Надо выяснить, где, в каком отделе мозга находится участок повышенной возбудимости (фокус эпилепсии), который приводит к эпилептическому приступу. Можно прогнозировать эпилепсию у детей. При высокой температуре у ребенка возникают судороги, такой ребенок должен быть на контроле.

Время от времени необходимо посмотреть электроэнцефолограмму, появление 5-6 раз волны в течение часа, говорит о судорожной готовности мозга.

При наркозе во время операции, с ее помощью определяют глубину наркоза. В некоторых клиниках разрешено факт смерти констатировать по энцефолограмме.

Кожно – гальваническая реакция КГР.

Французский врач Фере – 1888 год пропускал ток через кожу своих больных, и измерял какой будет потенциал в зависимости от того как человек поправлялся.

Тарханов – измерял сопротивление кожи, и обнаружил, что при разных состояниях человека состояние кожи меняется.

Юнг считал, что изменение потенциалов, или изменение сопротивления кожи может отражать эмоциональное состояние человека. КГР Юнг назвал «Окно в бессознательное»

Для этого проводились опыты вызывая у человека разные реакции. Санкторио Санкториус – 1614 году начал свои работы и продолжал их 30 лет изучал процесс потоотделения, работу потовых желез. Он сконструировал точные весы, садился на них и изучал, как меняется вес тела в зависимости от погоды.

У человека от 1 до 2 миллионов потовых желез, у них разные функции и они по разному располагаются:

Часть отвечает за терморегуляцию;

Роль в запахах в сексуальных отношениях;

Эмоционально- значимые потовые железы, больше всего их на подошвах и ладонях 400 потовых желез на 1 кв. см., на лбу – 200, на спине – 60.

Из них пот начинает выделяться при напряжении, при страхе, когда увеличивается выделение пота уменьшается сопротивление, и потенциал увеличивается. Количество пота увеличивается потому, что включается симпатическая нервная система. Потовые железы эмоционально- значимые потому, что инервируются только симпатической нервной системой.

Пупиллометрия – измерение величины зрачка. Зрачок – участок мозга выдвинутый на поверхность тела, чтобы весь мир мог его видеть и оценивать. Введение в психофизиологию автор Хессет, издательство «МИР» 1981 год - там приводится ряд доказательств. Конфуций: «загляни человеку в зрачки и он не сможет спрятаться»


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-04-20

Выбор редакции
Откуда вышел на свет глава Национальной гвардии, экс-охранник Владимира Путина Виктор Золотов, разбирался Sobesednik.ru.Попал точно в...

НПО «Квантовые технологии» — не первый опыт Романа Золотова в бизнесе. Несколько лет назад он входил в совет директоров Корпорация...

Медицинские эксперты рассматривают рак как комплекс заболеваний, связанных с различными факторами. В первую очередь, люди имеют...

Крепость Орешек — один из важнейших плацдармов обороны Российской империи вплоть до Второй мировой войны. Долгое время выполняла роль...
09сен2019 Серия - Young Adult. Нечто темное и святое ISBN: 978-5-04-103766-6, Young Adult. Нечто темное и святоеАвтор: разныеГод...
© Оформление. ООО «Издательство „Э“», 2017 © FLPA / Rebecca Hosking / DIOMEDIA © Mike Hayward Archive / Alamy / DIOMEDIA © Kristoffer...
Я жду, пока ко мне вернется голос. Вероятно, вместе с ним вернутся слова. А может быть, и нет. Может быть, некоторое время придется...
Автор Карина Добротворская Любить больно. Будто дала позволение освежевать себя, зная, что тот, другой, может в любую минуту удалиться с...
КАК УЗНАТЬ СВОЕ ПРЕДНАЗНАЧЕНИЕ ПО ДАТЕ РОЖДЕНИЯ!Советуем внимательно изучить этот нелегкий материал, примерить его к себе и внести...