Оценка рисков аварий на опасных производственных объектов. Анализ риска аварий металлургического предприятия


Невозможно без исследования обстоятельств и анализа риска возникновения на них аварий, чрезвычайных происшествий и несчастных случаев. Все процедуры этого процесса основаны, прежде всего, на положениях Федерального закона № 116 «О промышленной безопасности опасных производственных объектов», принятого еще в 1997 году. Кроме того, существует большое количество регламентов, правил и отраслевых требований, регулирующих эту сферу деятельности.

Условно процесс анализа риска потенциальных аварий на опасных производственных объектах (ОПО, - ред.) можно разделить на 3 этапа. На первом из них происходит полноценный и актуализированный сбор информации об объекте. Кроме общих данных, на этой стадии определяется факт , рассматриваются аварии происшедшие на предприятии, оценивается уровень их последствий, а также собирается вся техническая информация, в том числе касающаяся технологического процесса.

На втором этапе процедуры осуществляется непосредственно сама оценка гипотетического риска. Этот раздел предусматривает анализ следующих документов и процессов: , декларирование безопасности, страхование гражданской ответственности от вреда, нанесенного третьим лицам, производственный контроль и т.д.

Третьим, заключительным этапом оценки риска возникновения , является выполнение эффективного надзора над деятельностью предприятия в целях недопущения на нем подобных негативных происшествий. Реализация этой части комплексной оценки риска достигается следующим образом:

  1. Планирование мероприятий по обеспечению на ОПО.
  2. Наличие полного комплекта разрешительной документации.
  3. Контроль над выполнением регламента по всем функциональным направлениям.
  4. Регулирование деятельности опасного производственного объекта посредством нормативных .

Анализ риска возникновения аварий рассматривается, в том числе, через призму таких данных, как сведения, в которых изложены:

  1. Результаты анализа риска чрезвычайных происшествий и аварий на ОПО, а также их последствия для людей и окружающей среды.
  2. Условия, при которых ОПО эксплуатируется в безопасном режиме.
  3. Комплекс требований, предъявляемых не только к эксплуатации опасного производственного объекта, но и к капитальному ремонту, а также к его консервации и ликвидации.

Для того, чтобы реально оценить уровень промышленной безопасности на опасных производственных российских предприятий, причем в их количественном значении, необходимо проанализировать количество подобных структур, имеющих . Так, например, на начало 2012 года в Российской Федерации насчитывалось практически 300 000 зарегистрированных опасных производственных объектов, в том числе 3434 из них относились к первому классу опасности (1,3% от всего количества ОПО). Но, только около 5,0 тыс. ОПО сделали декларацию промышленной безопасности.

В настоящее время все большее распространение приобретает так называемая количественная оценка риска аварий. Специалисты отмечают, что подобный метод эффективен в следующих случаях:

  1. В процессе разработки проектных решений, а также при размещении опасного производственного объекта и .
  2. В сравнительных процедурах, а также обоснованиях технических решении и мероприятий, обеспечивающих защиту объекта.
  3. Оценки последствий на опасных производственных объектах, вызванных выбросом опасных и токсичных веществ.

Этот подход имеет как свои достоинства, так и недостатки. К первым относится:

  • Выявление «проблемных зон» исключительно математическими методами.
  • Возможность на основе единых показателей сравнение разнообразных видов опасностей.
  • Наглядность выводов и результатов расчетных показателей.

Имеет и недостатки. Это:

  • Большой объем данных и расчетных показателей.
  • Зависимость расчетов от исходной информации, ее достоверности и допущений.
  • Возможность «подстройки» расчетов под конкретный, «нужный» результат.

Большое значение для проведения корректной и эффективной процедуры оценки риска аварий на опасном производственном объекте , которая в Российской Федерации достаточно полноценна и эффективна. Более того, она практически не отличатся от аналогичного зарубежного регламента, за исключение некоторых специализированных методик и положений, используемых в отдельных отраслях. Тем не менее методология в области промышленной безопасности, в том числе в сфере оценки риска возникновения аварий на ОПО, продолжает развиваться. В настоящее время этот процесс продвигается в следующих направлениях:

  • Оценка аварий, чрезвычайных происшествий и несчастных случаев, происшедших на опасных производственных объектах.
  • Создание единых информационных баз данных.
  • Использование более качественных способов анализа вероятных опасностей.
  • Ликвидация противоречий в нормативных документах и регламентах, а также разночтений и конкретных ошибок. Это необходимо для того, чтобы исключить проблемы при реализации мероприятий по обеспечению промышленной безопасности.
  • Формирование комплекса методик по типовому регламенту, особенно для таких опасных объектов, как нефтяные,

Методы оценки риска.

К о н ц е п ц и я п р и е м л е м о г о р и с к а - минимально возможный риск при современном развитии науки и техники с оптимизацией возможных общих затрат на технический риск и ущерб от проявления опасного фактора. Например в Голландии - приемлемый уровень индивидуального риска установлен законодательно - 10 -6 .

Максимальный риск для экосистем - 5% гибели видов биогеоценоза.

Пренебрежимо малый риск - 10 -8 .

Пути повышения уровня безопасности и снижения риска:

1) технический - совершенствование технических систем и объектов;

2) организационный - подготовка персонала;

3) административный - ликвидация НС;

4) социальный - страхование, компенсации, платежи за риск и т.д.

У п р а в л е н и е Б Ж Д - воздействие на систему "человек-окружающая среда" для перевода из опасного в менее опасное (снижение риска) состояние с соблюдением условий экономической и технической целесообразности.

Основные определения. Анализ риска аварии – процесс идентификации опасностей и оценки риска аварии на опасном производственном объекте для отдельных лиц или групп людей, имущества или окружающей природной среды.

Опасность аварии – угроза, возможность причинения ущерба человеку, имуществу и (или) окружающей среде вследствие аварии на опасном производственном объекте. Опасности аварий на опасных производственных объектах связаны с возможностью разрушения сооружений и (или) технических устройств, взрывом и (или) выбросом опасных веществ с последующим причинением ущерба человеку, имуществу и (или) нанесением вреда окружающей природной среде.

Оценка риска аварии - процесс, используемый для определения вероятности (или частоты) и степени тяжести последствий реализации опасностей аварий для здоровья человека, имущества и (или) окружающей природной среды. Оценка риска включает анализ вероятности (или частоты), анализ последствий и их сочетания.

Приемлемый риск аварии - риск, уровень которого допустим и обоснован исходя из социально-экономических соображений. Риск эксплуатации объекта является приемлемым, если ради выгоды, получаемой от эксплуатации объекта, общество готово пойти на этот риск.

Риск аварии - мера опасности, характеризующая возможность возникновения аварии на опасном производственном объекте и тяжесть ее последствий. Основными количественными показателями риска аварии являются:

технический риск - вероятность отказа технических устройств с последствиями определенного уровня (класса) за определенный период функционирования опасного производственного объекта;

индивидуальный риск - частота поражения отдельного человека в результате воздействия исследуемых факторов опасности аварий;


потенциальный территориальный риск (или потенциальный риск) - частота реализации поражающих факторов аварии в рассматриваемой точке территории;

коллективный риск - ожидаемое количество пораженных в результате возможных аварий за определенное время;

социальный риск, или F/N-кривая, - зависимость частоты возникновения событий F, в которых пострадало на определенном уровне не менее N человек, от этого числа N. Характеризует тяжесть последствий (катастрофичность) реализации опасностей;

ожидаемый ущерб - математическое ожидание величины ущерба от возможной аварии за определенное время

Ущерб от аварии - потери (убытки) в производственной и непроизводственной сфере жизнедеятельности человека, вред окружающей природной среде, причиненные в результате аварии на опасном производственном объекте и исчисляемые в денежном эквиваленте.

Общие положения. Анализ риска аварий на опасных производственных объектах (далее - анализ риска) является составной частью управления промышленной безопасностью. Анализ риска заключается в систематическом использовании всей доступной информации для идентификации опасностей и оценки риска возможных нежелательных событий. Результаты анализа риска используются при декларировании промышленной безопасности опасных производственных объектов, экспертизе промышленной безопасности, обосновании технических решений по обеспечению безопасности, страховании, экономическом анализе безопасности по критериям "стоимость-безопасность-выгода", оценке воздействия хозяйственной деятельности на окружающую природную среду и при других процедурах, связанных с анализом безопасности.

Основные этапы анализа риска. Процесс проведения анализа риска включает следующие основные этапы: планирование и организацию работ;

o идентификацию опасностей;

Цели и задачи анализа риска могут различаться и конкретизироваться на разных этапах жизненного цикла производственного объекта. На этапе обоснования инвестиций или проведения предпроектных работ или проектирования анализа риска, как правило, является:

Выявление опасностей и априорная количественная оценка риска с учетом воздействия поражающих факторов аварии на персонал, население, имущество и окружающую природную среду;

Обеспечение информацией для разработки инструкций технологического регламента и планов ликвидации (локализации) аварийных ситуаций на опасном производственном объекте;

На этапе ввода в эксплуатацию (вывода из эксплуатации) опасного производственного объекта целью анализа риска могут быть:

Выявление опасностей и оценка последствий аварий, уточнение оценок риска, полученных на предыдущих этапах функционирования опасного производственного объекта;

Проверка соответствия условий эксплуатации требованиям промышленной безопасности;

На этапе эксплуатации или реконструкции опасного производственного объекта целью анализа риска может быть:

проверка соответствия условий эксплуатации требованиям промышленной безопасности;

уточнение информации об основных опасностях и рисках (в том числе при декларировании промышленной безопасности);

При выборе методов анализа риска следует учитывать цели, задачи анализа, сложность рассматриваемых объектов, наличие необходимых данных и квалификацию привлекаемых для проведения анализа специалистов. Приоритетными в использовании являются методические материалы, согласованные или утвержденные Госгортехнадзором России или иными федеральными органами исполнительной власти.

Определением критерия приемлемого риска является его обоснованность и определенность. При этом критерии приемлемого риска могут задаваться нормативной документацией, определяться на этапе планирования анализа риска и (или) в процессе получения результатов анализа. Критерии приемлемого риска следует определять исходя из совокупности условий, включающих определенные требования безопасности и количественные показатели опасности.

Идентификация опасностей. Основные задачи этапа идентификации опасностей - выявление и четкое описание всех источников опасностей и путей (сценариев) их реализации. Это ответственный этап анализа, так как не выявленные на этом этапе опасности не подвергаются дальнейшему рассмотрению и исчезают из поля зрения.

При идентификации следует определить, какие элементы, технические устройства, технологические блоки или процессы в технологической системе требуют более серьезного анализа и какие представляют меньший интерес с точки зрения безопасности. Результатом идентификации опасностей являются:

Перечень нежелательных событий;

Описание источников опасности, факторов риска, условий возникновения и развития нежелательных событий (например, сценариев возможных аварий);

Предварительные оценки опасности и риска.

Идентификация опасностей завершается также выбором дальнейшего направления деятельности. В качестве вариантов может быть:

Решение прекратить дальнейший анализ ввиду незначительности опасностей или достаточности полученных предварительных оценок*(2):

Решение о проведении более детального анализа опасностей и оценки риска:

Оценка риска. Основные задачи этапа оценки риска:

Определение частот возникновения инициирующих и всех нежелательных событий;

Оценка последствий возникновения нежелательных событий;

Обобщение оценок риска.

Для определения частоты нежелательных событий рекомендуется использовать: статистические данные по аварийности и надежности технологической системы.

Оценка последствий аварий включает анализ возможных воздействий на людей, имущество и (или) окружающую природную среду. Для оценки последствий необходимо оценить физические эффекты нежелательных событий (отказы, разрушения технических устройств, зданий, сооружений, пожары, взрывы, выбросы токсичных веществ и т.д.), уточнить объекты, которые могут быть подвергнуты опасности. При анализе последствий аварий необходимо использовать модели аварийных процессов и критерии поражения, разрушения изучаемых объектов воздействия, учитывать ограничения применяемых моделей производства. Следует также учитывать и выявлять связь масштабов последствий с частотой их возникновения.

Обобщенная оценка риска (или степень риска) аварий должна отражать состояние промышленной безопасности с учетом показателей риска от всех нежелательных событий, которые могут произойти на опасном производственном объекте. Имеется много неопределенностей, связанных с оценкой риска. Как правило, основными источниками неопределенностей являются неполнота информации по надежности оборудования и человеческим ошибкам, принимаемые предположения и допущения используемых моделей аварийного процесса. Чтобы правильно интерпретировать результаты оценки риска, необходимо понимать характер неопределенностей и их причины. Источники неопределенности следует идентифицировать (например, "человеческий фактор"), оценить и представить в результатах.

Разработка рекомендаций по уменьшению риска. является заключительным этапом анализа риска. В рекомендациях представляются обоснованные меры по уменьшению риска, основанные на результатах оценок риска. Меры по уменьшению риска могут носить технический и (или) организационный характер. При выборе мер решающее значение имеет общая оценка действенности и надежности мер, оказывающих влияние на риск, а также размер затрат на их реализацию. При разработке мер по уменьшению риска необходимо учитывать, что вследствие возможной ограниченности ресурсов в первую очередь должны разрабатываться простейшие и связанные с наименьшими затратами рекомендации по мерам, а также меры на перспективу. При необходимости обоснования и оценки эффективности предлагаемых мер по уменьшению риска рекомендуется придерживаться двух альтернативных целей их оптимизации:

При заданных средствах обеспечить максимальное снижение риска эксплуатации опасного производственного объекта;

При минимальных затратах обеспечить снижение риска до приемлемого уровня.

Необходимо ранжировать эти меры для уменьшения риска по показателю "эффективность-затраты" , т.е. обосновать и оценить эффективность предлагаемых мер.

Методы проведения анализа риска. При выборе методов проведения анализа риска необходимо учитывать этапы функционирования объекта (проектирование, эксплуатация и т.д.), цели анализа, критерии приемлемого риска, тип анализируемого опасного производственного объекта и характер опасности, наличие ресурсов для проведения анализа, опыт и квалификацию исполнителей, наличие необходимой информации и другие факторы. При выборе и применении методов анализа риска рекомендуется придерживаться следующих требований:

Метод должен быть научно обоснован и соответствовать рассматриваемым опасностям;

Метод должен давать результаты в виде, позволяющем лучше понять формы реализации опасностей и наметить пути снижения риска;

Метод должен быть повторяемым и проверяемым.

Требования к оформлению результатов анализа риска. Результаты анализа риска должны быть обоснованы и оформлены таким образом, чтобы выполненные расчеты и выводы могли быть проверены и повторены специалистами, которые не участвовали при первоначальном анализе.

ЛЕКЦИЯ 4. Результаты оценки риска включают:

Анализ неопределенностей результатов оценки риска

Обобщение оценок риска, в том числе с указанием наиболее "слабых" мест;

Заключение;

Перечень используемых источников информации.

Всесторонняя оценка риска аварий основывается на анализе причин (отказы технических устройств, ошибки персонала, внешние воздействия) возникновения и условий развития аварий, поражения производственного персонала, населения, причинения ущерба имуществу эксплуатирующей организации или третьим лицам, вреда окружающей природной среде. Чтобы подчеркнуть, что речь идет об "измеряемой" величине, используется понятие "степень риска" или "уровень риска".

Степень риска аварий на опасном производственном объекте , эксплуатация которого связана со множеством опасностей, определяется на основе учета соответствующих показателей риска. Показатели риска выражаются в виде сочетания (комбинации) вероятности (или частоты) и тяжести последствий рассматриваемых нежелательных событий.

Характеристики основных количественных показателей риска следующие:

1. При анализе опасностей, связанных с отказами технических устройств, выделяют технический риск, показатели которого определяются соответствующими методами теории надежности.

2. Одной из наиболее часто употребляющихся характеристик опасности является индивидуальный риск - частота поражения отдельного индивидуума (человека) в результате воздействия исследуемых факторов опасности. В общем случае количественно (численно) индивидуальный риск выражается отношением числа пострадавших людей к общему числу рискующих за определенный период времени. Индивидуальный риск во многом определяется квалификацией и готовностью индивидуума к действиям в опасной ситуации, его защищенностью. Индивидуальный риск следует определять не для каждого человека, а для групп людей, характеризующихся примерно одинаковым временем пребывания в различных опасных зонах и использующих одинаковые средства защиты. Рекомендуется оценивать индивидуальный риск отдельно для персонала объекта и для населения прилегающей территории или, при необходимости, для более узких групп, например для рабочих различных специальностей.

Потенциальный территориальный (или потенциальный) риск не зависит от факта нахождения объекта воздействия (например, человека) в данном месте пространства. Как правило, потенциальный риск оказывается промежуточной мерой опасности, используемой для оценки социального и индивидуального риска при крупных авариях. Распределения потенциального риска и населения в исследуемом районе позволяют получить количественную оценку социального риска для населения. Для этого нужно рассчитать количество пораженных при каждом сценарии от каждого источника опасности и затем определить частоту событий F, при которой может пострадать на том или ином уровне N и более человек.

Социальный риск характеризует масштаб и вероятность (частоту) аварий и определяется функцией распределения потерь (ущерба), у которой есть установившееся название - F/N-кривая*. В общем случае в зависимости от задач анализа под N можно понимать и общее число пострадавших, и число смертельно травмированных или другой показатель тяжести последствий. Соответственно критерий приемлемого риска будет определяться уже не числом для отдельного события, а кривой, построенной для различных сценариев аварии с учетом их вероятности . В настоящее время общераспространенным подходом для определения приемлемости риска является использование двух кривых, когда, например, в логарифмических координатах определены F/N-кривые приемлемого и неприемлемого риска смертельного травмирования. Область между этими кривыми определяет промежуточную степень риска.

Количественной интегральной мерой опасности объекта является коллективный риск, определяющий ожидаемое количество пострадавших в результате аварий на объекте за определенное время.

НА НАРУЖНЫХ УСТАНОВКАХ ОПАСНЫХ ПРОИЗВОДСТВЕННЫХ ОБЪЕКТОВ

В соответствии п.6 ст.6 Федерального закона от 2 июля 2008 г. №123-ФЗ "Технический регламент о требованиях пожарной безопасности» (ФЗ-123) расчеты по оценке пожарного риска являются составной частью декларации пожарной безопасности или декларации промышленной безопасности (на объектах, для которых они должны быть разработаны в соответствии с законодательством Российской Федерации).

Ниже представлены примеры работ ЗАО НТЦ ПБ и ведущих специалистов в этой области, выполненных в период 2000-2008гг. по декларированию промышленной безопасности и оценке риска аварий, в том числе связанных с пожаром. Учитывая, что основной вклад в поражающие факторы аварий на рассмотренных объектах связан с выбросом и воспламенением горючих веществ, то в большинстве случаев рассчитанный индивидуальный риск гибели людей от аварий совпадает с индивидуальным пожарным риском.

По тексту примеров даны комментарии, связанные с актуализацией нормативных документов.

А. Оценка риска аварий и пожаров на газонаполнительной станции.

Б. Оценка риска аварий и пожаров на опасных производственных объектах

хранения нефтепродуктов (По материалам публикации на http://safety.moy.su/publ/20-1-0- 73)

В. Оценка риска аварий и пожаров на опасных производственных объектах магистрального трубопроводного транспорта

(по материалам ФГУП «НТЦ «Промышленная безопасность», ВНИИГАЗ, 2000-2004,2007, Гражданкин А.И., Дадонов Ю.А., Дегтярев Д.В., Лисанов М.В., Овчаров С.В., Печеркин А.С., Сафонов В.С., Сидоров В.И., Сумской С.И., Швыряев А.И. и др.)

Г. Применение количественного анализа риска аварий на магистральном трубопроводе ШФЛУ для оценки минимальных безопасных расстояний

(по материалам публикаций в ж-лах «Безопасность труда в промышленности», «Технологии ТЭК»/ 2007 г., - Лисанов М.В., Пчельников А.В., Сумской С.И., Шанина Е.Л., (ОАО "НТЦ "Промышленная безопасность"), Зозуля В.В. (ОАО «НИПИгазпереработка»)).

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ

А. ОЦЕНКА РИСКА АВАРИЙ И ПОЖАРОВ НА ГАЗОНАПОЛНИТЕЛЬНОЙ СТАНЦИИ

(По материалам публикации в ж-ле «Безопасность труда в промышленности», 2001. - №8, Гражданкин А.И., Лисанов М.В., Лыков С.М., Печеркин А.С., Сумской С.И.)

Газонаполнительные станции (ГНС) являются распространенными опасными производственными объектами, предназначенными для приема, хранения и снабжения населения сжиженными углеводородными газами (СУГ) - пропаном, бутаном и их смесями в баллонах, а также для поставки газа в автоцистернах в качестве заправочного топлива автомобилей.

Основными технологическими операциями, проводимыми на ГНС, являются сливноналивные операции, связанные с приемом и отпуском СУГ потребителям.

Наличие значительных (до нескольких сотен тонн) запасов СУГ на ГНС и высокая потенциальная опасность СУГ (СУГ легко переходит в газовую фазу, которая при смешении с воздухом образует взрывоопасные смеси ) позволяют отнести ГНС к опасным производственным объектам, которые могут представлять опасность не только для персонала, но и для населения.

В настоящей статье изложены основные результаты анализа риска (В том числе риска пожаров, связанных с аварийными выбросами опасных веществ ), проведенного при составлении декларации промышленной безопасности типичной ГНС.

1. Общие сведения

Производственная мощность рассматриваемой ГНС составляет 10000 т СУГ в год,

доставляемых от поставщиков в железнодорожных цистернах. Это количество СУГ распределяется следующим образом:

1. 8000 т/год идет на заправку бытовых газовых баллонов;

2. 1500 т /год вывозится автоцистернами потребителю;

3. 500 т/год идет на заправку газобаллонных автомобилей на автомобильной газозаправочной станции (АГЗС), находящейся рядом с ГНС.

Максимальное количество СУГ, которое единовременно может находится на ГНС, – 500

В составе ГНС имеются:

ж/д эстакада для одновременного приема 4 ж/д цистерн объемом по 54 м 3 ;

хранилище СУГ – 12 подземных резервуаров объемом по 100 м 3 каждый;

насосно-компрессорное отделение (5 насосных и 2 компрессорных агрегата);

наполнительное отделение (для наполнения бытовых баллонов объемом 27 л) с погрузочно-разгрузочными площадками;

колонка для наполнения автоцистерн;

АГЗС (операторная, топливнораздаточная колонка для легковых автомобилей,

заглубленный резервуар запаса топлива 10 м3 ).

По территории ГНС проложены наземные трубопроводы, соединяющие ж/д эстакаду, хранилище СУГ, насосно-компрессорное отделение, наполнительное отделение, АГЗС и колонку для наполнения автоцистерн.

На территории ГНС также имеется ряд вспомогательных объектов для обеспечения работы ГНС.

Максимальная рабочая смена на ГНС составляет 30 человек персонала. Так же на территории ГНС могут находится третьи лица, приехавшие для получения СУГ.

Рассматриваемая ГНС расположена на равниной слабопересеченной местности. На расстоянии 50 м от границ ГНС находится автодорога III категории, а в 80 м - железная дорога. Ближайший населенный пункт находится на расстоянии 700 м. Схема расположения ГНС показана на рис. 2.

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ

2. Выявление причин аварийных ситуаций и определение сценариев их развития

Анализ риска рассматриваемого объекта включает следующие этапы:

определение возможных причин и факторов, способствующих возникновению и развитию аварий; определение типовых сценариев возможных аварий;

оценка количества опасных веществ, участвующих в аварии , и расчет вероятных зон действия поражающих факторов;

оценка возможного числа пострадавших;

обобщение оценок риска и сравнение их значений с критериями приемлемого

Анализ произошедших аварий на аналогичных объектах позволяет выделить три взаимосвязанные группы причин, способствующих возникновению и развитию аварий:

− отказы оборудования (коррозия; физический износ; механические повреждения; ошибки при проектировании и изготовлении – раковины, дефекты в сварных соединениях; усталостные эффекты металла, не выявленные при освидетельствовании; нарушение режимов эксплуатации – переполнение емкостей, нарушение скорости перекачки СУГ, превышение давления);

− ошибки персонала (ошибки при приеме СУГ из железнодорожных цистерн; ошибки при отпуске СУГ потребителям - наполнении автоцистерн, заправке газобаллонных автомобилей; ошибки при наполнении бытовых баллонов, их погрузке, операциях слива переполненных и отбракованных баллонов; ошибки при отборе проб СУГ из резервуаров; ошибки при подготовке оборудования к ремонту, проведении ремонтных и профилактических работ; ошибки при пуске и останове оборудования; ошибки при локализации аварийных ситуаций);

− нерасчетные внешние воздействия природного и техногенного характера (штормовые ветра и ураганы, снежные заносы, ливневые дожди, грозовые разряды, механические повреждения, диверсии).

Основные аварийные ситуации на рассматриваемом объекте связаны с разрушением (полным или частичным) емкостного оборудования, трубопроводов или насосов, поэтому именно эти варианты аварий и выбираются в качестве типовых сценариев. Например, на железнодорожной эстакаде возможны следующие сценарии:

Сценарий Ж 1 : разрушение (полное или частичное ) ж/д цистерны с СУГ → истечение СУГ → вскипание перегретой жидкости и образование из нее охлажденных до температуры кипения газовой фазы и аэрозольных капель, пролив жидкой фазы на подстилающую поверхность, растекание, кипение и испарение жидкой фазы на поверхности; интенсивное смешение с

воздухом → рассеяние газокапельного облака СУГ (первичное и вторичное облако ) → воспламенение облака и/или жидкой фазы при наличии источника зажигания → горение пролива

и облака ТВС → воздействие ударных волн, открытого пламени и теплового излучения на людей

и близлежащие объекты (в т.ч. образование огненных шаров при попадании в пожар соседних

цистерн или аварийной цистерны с СУГ).

Сценарий Ж 2 : разрушение (полное или частичное ) сливного (наливного ) трубопровода с СУГ →

струйное истечение СУГ до срабатывания клапана безопасности → вскипание перегретой жидкости и образование из нее охлажденных до температуры кипения газовой фазы и аэрозольных капель, пролив жидкой фазы на подстилающую поверхность, растекание, кипение и

испарение жидкой фазы на подстилающей поверхности; интенсивное смешение с воздухом → рассеяние газокапельного облака СУГ (первичное и вторичное облако ) → воспламенение облака и/или жидкой фазы при наличии источника зажигания → горение пролива и облака ТВС,

возникновение факела на месте разрушения → воздействие ударных волн, открытого пламени и теплового излучения на людей и близлежащие объекты (в т.ч. образование огненных шаров при

попадании в пожар цистерн с СУГ).

Сценарии подобные Ж 1 , но с учетом специфики размещения и эксплуатации оборудования возможны, с резервуарами хранилища СУГ, автоцистерной, резервуаром АГЗС.

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ 4

Сценарии подобные Ж 2 возможны на системе трубопроводов к потребителю, на обвязке резервуаров, на наполнительной колонке автоцистерн, на АГЗС.

Также в качестве типовых сценариев возможных аварий рассматривались:

- взрыв в резервуаре;

- взрыв бытового баллона;

- разгерметизация насоса.

Рассматриваемые сценарии аварии включают в себя и сценарии, развитие которых сопровождается так называемым «эффектом домино». Этот эффект отражен в приведенных выше схемах на последних этапах развития аварии – «воздействие ударных волн, осколков, открытого пламени и теплового излучения на близлежащие объекты». В зависимости от степени воздействия поражающих факторов на близлежащие к месту аварии объекты возможно либо дальнейшее развитие аварии, либо ее локализация и ликвидация.

В общем случае описанные выше схемы развития аварии (см. сценарии Ж 1 и Ж 2 ) являются группами сценариев и включают в себя несколько различных путей, по которым может развиваться авария. Например, на рис. 1 приведено «дерево событий» для аварии на трубопроводе.

воспламенение на месте выброса; горение факела; пожар пролива

(тепловое воздействие)

разрушение рукава, трубопровода

испарение пролива, инициирования горения, горение облака,

полный сток СУГ из трубопровода

инициирования горения при наличии пролива, горение облака,

пожар пролива

воспламенения на месте выброса нет;

(тепловое воздействие; поражение УВ)

образование пролива; дрейф облака

инициирование до окончания истечения СУГ: горение облака; факел; пожар пролива

(тепловое воздействие; поражение УВ)

Рисунок 1. «Дерево событий» развития аварий при разрыве трубопроводов, рукавов.

Более того, при определении конкретных последствий для различных условий протекания аварии (характер и место разрушения, условия в окружающей среде и т.д.) количество конкретных параметров реализации того или иного сценария существенно возрастает. Для рассматриваемой ГНС условия развития аварии принимались различными в следующих случаях:

- для каждого из 12 месяцев года принималась соответствующая температура окружающей среды;

- для различных времен суток брались различные условия рассеяния выброса и различные температуры;

- рассматривалось восемь направлений ветра с интервалом 45 о ;

- для трубопроводов рассматривались аварии с шагом 5 м по длине трубопровода.

В целом на объекте было просчитано свыше 22000 аварийных ситуаций.

Для количественного анализа риска последствий аварий были использованы следующие методики:

- «Методика оценки последствий аварийных взрывов топливно-воздушных смесей», НТЦ "Промышленная безопасность", согласована Госгортехнадзором России1 ;

- Manual of Industrial Hazard Assessment Techniques. Office of Environmental and Scientific Affair. The World Bank (Методика Всемирного Банка) – для расчета зон воздействия при горения факелов и рассеяния облаков топливно-воздушных смесей;

ГОСТ Р 12.3.047-98 – для оценки последствий огненного шара и пожара пролива.

3. Определение размеров зон возможного поражения

1 В настоящее время РД 03-409-01

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ 5

Радиусы возможного поражения при авариях на ГНС лежат в широком диапазоне от нескольких метров до нескольких сотен метров. Например, для аварий на ж/д эстакаде (сценарии Ж 1 и Ж 2 ) радиусы смертельного поражения человека с условной вероятностью 0,1 составят 180 м при образовании огненного шара; 40 м при пожаре пролива и 37 м при горении факела. Расстояние же, на которое может дрейфовать облако СУГ, сохраняя способность к воспламенению составит до 560 м. При этом следует отметить, что полученные результаты хорошо согласуются с имеющимися данными по радиусам поражения, наблюдавшимся в реальных авариях с сопоставимыми количествами СУГ. Например, 9 декабря 1970 г. в Порт Хадсоне (шт. Миссури, США) в результате разрыва подземного трубопровода было выброшено около 60 тонн сжиженного пропана. При этом образовалось облако высотой 3-6 м и протяженностью 490 м, облако дрейфовало до тех пор, пока не достигло строений, где от искры воспламенилось (задержка воспламенения составила 24 мин). Произошел сильный взрыв и последующее сгорание переобогащенной части облака. Зоны поражения соответствовали взрыву тротила в 45 тонн. В наших расчетах расстояние, на котором облако, образовавшееся при выбросе около 50 т СУГ (разрушение резервуара в хранилище СУГ), сохраняло способность к воспламенению на расстоянии до 620 м.

В другом случае 9 марта 1972 г. в Линчберге (шт. Виргиния, США) при образовании огненного шара из 10 т пропана на расстоянии 130 м погиб один человек и двое остались живы, но получили ожоги. На расстоянии 140 м три человека остались живы, хотя также получили ожоги. Такие последствия аварии позволяют принять в качестве размера зоны смертельного поражения с условной вероятностью 1/3 расстояние 130 м. По нашим расчетам размер зоны смертельного поражения с условной вероятностью 1/3 для огненного шара из 10 т пропана составляет 105 м.

Сравнение рассчитанных зон поражения и зон поражения, наблюдавшихся на практике при горении проливов и факелов, показывает, что и в этом случае использованные модели дают удовлетворительную точность расчета.

4. Оценка числа пострадавших

Результаты анализа размеров зон поражения при всевозможных сценариях аварий

позволяет утверждать, что при любой аварии на рассматриваемой ГНС, связанной с разрушением одной единицы оборудования, поражающие факторы не приведут к прямому смертельному поражению людей в близлежащих населенных пунктах, находящихся на расстоянии более 700 м от ГНС. Однако в зону смертельного поражения попадают близлежащие авто- и железная дороги. Очевидно также, что в зоне возможного смертельного поражения находится и сама территория ГНС. Возникает вопрос, какое количество людей может пострадать при авариях на ГНС. В зависимости от сценария аварийной ситуации и в зависимости от количества СУГ, вовлекаемого в аварию, количество пострадавших может изменяться в широких пределах:

- при аварии в помещении наполнительного отделения могут погибнуть все находящиеся в нем люди - до 3 человек;

- при взрыве паров СУГ внутри резервуара возможна гибель до 2 человек;

- при образовании горящих проливов и факелов (при разгерметизации трубопроводов и арматуры ) возможна гибель до 2 человек, находящихся на территории объекта и

попавших в зону смертельного поражения тепловым излучением; при этом следует отметить, что при пожарах проливов и горении факела люди, находящиеся за пределами объекта, в т.ч. перемещающиеся по дорогам, в зону поражения не попадают;

- при образовании огненных шаров или при сгорании дрейфующих газовых облаков возможна гибель всех людей, находящихся на территории объекта (до 30 человек – наибольшая работающая смена ), а также поражение людей за пределами ГНС; при этом наиболее опасными с точки зрения поражения при горении облаков являются аварии на железнодорожной эстакаде и в резервуарном парке при юго-западном ветре, когда на пути облака оказывается сразу несколько зданий.

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ 6

Следует заметить, что приведенные оценки количества погибших являются пессимистическими. В реальной ситуации число погибших может не превысить 9-10 человек, поскольку в ряде случаев люди могут выйти из зоны поражения.

Число пострадавших, при попадании в зону поражения автодороги или железнодорожных путей будет зависеть от интенсивности движения. Люди, передвигающиеся по авто- и железной дорогам, могут пострадать только при возникновении огненного шара или воспламенении дрейфующего облака (для автодороги дрейф и воспламенение облака при юго-восточном,

восточном или северо-восточном ветрах; для железной дороги дрейф и воспламенение облака при юго-западном, западном или северо-западном ветрах). Причем при горении облака поражение в районе дорог возможно при условии, что облако не воспламенилось на пути дрейфа до автоили железной дорог, и воспламенение произошло уже при попадании транспортных средств во взрывоопасное облако.

Для автомобильной дороги в зону поражения попадет до 6 человек (2 легковых автомобиля ). При движении в момент аварии по автодороге пассажирского автобуса в зону поражения попадут все пассажиры автобуса.

Количество пострадавших на железной дороге может достигать 140 человек при попадании в зону поражения пассажирского поезда.

5. Оценка риска

Полученные значения размеров зон поражения и количества пострадавших дают представления о масштабах возможных аварий на ГНС. Однако для полноты представления об уровне опасности объекта необходимо знать не только масштабы, но и частоту возникновения возможных аварий или потерь.

Для оценки вероятности реализаций опасности и показателей риска использовались статистические данные по отказам применяемых технических устройств, экспертные оценки и метод «дерева событий» (в соответствии с РД 08-120-962 ).

Выбор значений частот инициирующих событий произведен на основе обобщенных статистических данных с учетом того, что на объекте используется современное технологическое оборудование (резервуары и трубопроводы с двойными стенками, средства КИПА и противоаварийной защиты ). При определении частоты возникновения аварии учитывалась интенсивность эксплуатации оборудования в течение года.

Соответствующие вероятности исхода того или иного сценария определялись по «деревьям события» (см., например, рис. 1) и вероятности инициирующих событий.

По всем группам сценариев определено пространственное распределение потенциального территориального риска, показывающее частоту смертельного поражения (год–1 ) в каждой точке территории декларируемого объекта и на прилегающих площадях. Распределение потенциального риска представлено на рис. 2.

2 В настоящее время РД 03-418-01

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ

Рисунок 2. Распределение потенциального территориального риска, отображающего частоту возникновения поражающих факторов гибели человека от возможных аварий на ГНС за 1 год. (Обозначение частоты 1Е-n соответствует значению 10-n , размерность частоты - 1/год).

На основе полученного пространственно-временного распределения потенциального риска, а также учитывая распределение людей на территории декларируемого объекта, прилегающих площадях, близлежащих авто- и железной дорогах, определены коллективные риски гибели различных категорий людей (возможное число погибших в год ). В таблице 1 приведены полученные значения коллективных рисков при возникновении аварий на

декларируемом объекте.

Таблица 1

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ

Коллективный риск (возможное число погибших в год) при возникновении аварий

на декларируемом объекте

Число пострадавших, чел/год

1,8 х10 –3

Третьи лица на территории декларируемого

1,1 х10 –3

3,14 х10 –5

декларируемому объекту

2,9 х10 –3

По значению коллективных рисков и количеству людей попадающих под воздействие поражающих факторов оценены средние индивидуальные риски различных категорий людей (см.

таблицу 2).

Таблица 2 Средний индивидуальный риск гибели при возникновении аварий на

декларируемом объекте

Индивидуальный риск*) ,

Персонал на территории декларируемого объекта

3,75 х10 –5

Третьи лица на территории, прилегающей к

до 4,6 х10 –7

декларируемому объекту

Пассажиры автотранспортных средств

до 1,5 х10 -8

Пассажиры поездов железной дороги

до 1,1 х10 -9

*) – соответствует индивидуальному пожарному риску

Указанные показатели риска в целом значительно ниже фоновых показателей риска, связанных с обыденной жизнью человека. Для сравнения частота смерти от неестественных причин в России (1987 г. ) составляла -1 – 1,7х10-3 год-1 ; риск убийства и самоубийства в России (1991 г. ) - 2,6х10-4 год-1 ; риск гибели в происшествиях с подвижным составом в России (1988 г. ) - 1,6х10-4 год-1 ; риск гибели в дорожно-транспортном происшествиях (в Московской области 1991 г. ) - 2,7х10-4 год-1 . Индивидуальный риск гибели для населения (на автодороге и ж/д и на территории, прилегающей к декларируемому объекту ) укладывается в пределы верхней оценки гибели населения в результате техногенной чрезвычайной ситуации в России (1989 г ) –

2,4х10-6 год-1 .

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ

Рисунок 3. Частота возникновения аварийных ситуаций с гибелью количества персонала выше указанного количества.

Помимо коллективных и средних индивидуальных рисков определен социальный риск, отражающий связь между тяжестью последствий и частотой их возникновения (F/N кривая). Например, на рис. 3 показана частота возникновения (в год ) смертельного поражения людей из персонала ГНС больше определенного числа. Из рисунка видно, что основная доля аварий более 95% приведет к гибели только одного человека. Исходя из данных приведенных на рис. 3, можно выделить три уровня опасности:

- первый соответствует гибели до 1-2 человек. Частота возникновения 2 х 10-5 - 1,6 х10-3 раза в год. Это ситуации, включающие в основном пожар проливов и горение факелов;

- второй уровень опасности - гибель до 15-18 человек. Частота их возникновения около 1х 10-5 раза в год. Это в основном ситуации связанные с воспламенением дрейфующих облаков в местах сосредоточения большого количества людей;

- третий уровень - гибель свыше 20 человек с частотой 10-8 -10-6 раза в год – ситуации, связанные в основном с образованием огненных шаров.

6. Анализ влияния различных факторов на показатели риска

Приведенные показатели риска отражают состояние ГНС на некоторый конкретный момент времени, соответствующий определенному состоянию оборудования и режиму эксплуатации (1-3 года ).

Представляется важным выяснить как различные факторы, связанные с изменениями на объекте, отразятся на показателях риска. Например, с течением времени износ оборудования приведет к увеличению частоты возникновения отказов на ГНС и соответственно к увеличению вероятности возникновения аварийных ситуаций. Так, при увеличении частоты разгерметизации оборудования на порядок показатели риска для всех категорий людей возрастут с 2,9х10 –3 чел./год до 5,4х10 –3 чел./год; средний индивидуальный риск для персонала объекта - с 3,75 х10 -5 год-1 до 9 х10 -5 год-1 ; для третьих лиц – пассажиров автотранспортных средств и железнодорожных составов - риск увеличится в 10 раз (с 1,7 х10 -7 год -1 до 1,7 10 -6 и с 1,1 10 -8 год -1

до 1,1 10-7 год-1 , соответственно).

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ 10

Существенным образом на показатели риска влияет профессиональная и противоаварийная подготовка персонала. Приведенные значения показателей риска соответствуют тому факту, что персонал ГНС прошел соответствующее обучение и профессиональную подготовку, в т.ч. подготовку по действиям по локализации и ликвидации аварий. Некачественная подготовка может привести к ошибкам в процессе ведения технологического процесса и в поведении при возникновении аварийной ситуации. Например, если персонал не сможет выйти из зоны возможного поражения, то показатели риска увеличатся и коллективный риск составит 2,4 х10 -2 чел./год против 1,8х10-3 чел./год. И наоборот, при успешной реализации мер по предотвращению развития аварии с эффектом «домино», например, на ж/д эстакаде, коллективный риск уменьшится с 1,8 х10 -3 чел./год до 1,5 х10 -3 чел./год. Конкретным технологическим решением, способствующим предотвращению эффекта «домино» на ж/д эстакаде, может стать увеличение длины тупикового пути от ж/д эстакады до упорного бруса и установление на упорном брусе лебедки для растаскивания цистерн при возникновении пожара на ж/д эстакаде.

По результатам анализа риска предложено 14 технических мероприятий по снижению риска возникновения аварийных ситуаций и уменьшению тяжести последствий аварий (в т.ч. мероприятия по улучшению конструкция насосов и компрессоров, установке дополнительных обвалований и т.д.).

Также существенному снижению риска третьих лиц способствуют и некоторые организационные мероприятия. Например, своевременное прекращение движения транспорта по авто- и железной дороге при возникновении аварийных ситуаций на ГНС сведет риск поражения пассажиров транспортных средств практически к нулю.

На основе применения методов количественного анализа риска для оценки безопасности типовой ГНС:

1. Проанализированы возможные причины возникновения, сценарии и условия протекания аварийных ситуаций, связанных с разгерметизацией оборудования и выбросом СУГ (смеси пропана с бутаном).

2. Рассчитаны возможные зоны поражения и количество пострадавших при более чем 22000 сценариев аварий (включая горение облаков, пожара пролива, огненного шара и горящих струй).

3. Получены количественные оценки риска, в т.ч. вероятности возникновения и

развития различных сценариев аварий, показатели индивидуального, коллективного, социального рисков, распределения потенциального территориального риска по объекту и окружающей местности.

4. Сделан вывод, что:

эксплуатация ГНС не создает опасности для людей, находящихся в близлежащих населенных пунктах 3 , в том числе при возможном дрейфе топливо-воздушной смеси,

индивидуальный риск гибели персонала и третьих лиц (в том числе находящихся на заправке газа, авто- и железной дороге) не превышает фоновые показатели риска обыденной жизнедеятельности человека.

5. Разработано 14 технических и 4 организационных мероприятия по обеспечению промышленной безопасности, при выполнении которых риск эксплуатации данного опасного производственного объекта может считаться допустимым и приемлемым.

3 Вывод сделан для приемлемости индивидуального риска 10-7 1/год

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ

Б. ОЦЕНКА РИСКА ПОЖАРОВ И АВАРИЙ НА ОПАСНЫХ ПРОИЗВОДСТВЕННЫХ ОБЪЕКТАХ ХРАНЕНИЯ НЕФТЕПРОДУКТОВ

(По материалам публикации на http://safety.moy.su/publ/20-1-0-73)

В данной примере представлены методические подходы, разработанные специалистами ЗАО НТЦ ПБ, для оценки риска аварий, в том числе сопровождающихся пожаром, на типовых объектах хранения нефтепродуктов.

Опасный производственный объект «Н-ская нефтебаза» разделен на три составляющие – Береговую площадку, площадку «Коса» и межплощадочный трубопровод. На нефтебазе имеется морской терминал для приема и отгрузки нефтепродуктов (н/п). Общее количество хранящихся на объекте легковоспламеняющихся и горючих жидкостей, в том числе бензина, дизельного топлива, топлива ТС-1, керосина, масла – до 81000 т. На объекте – 57 резервуаров, самыми крупными являются резервуары объемом 3000 м3 . Персонал нефтебазы – 94 человека. Близлежащий населенный пункт с населением 7 тыс. человек находится от объекта на расстоянии 4 км.

I Анализ возможных сценариев развития аварий

1). Для рассматриваемой нефтебазы основными факторами риска аварий являются:

Сложные природно-климатические условия эксплуатации: полярная ночь, низкие температуры, нерегулярное электроснабжение, ветровые нагрузки, снежный покров, обледенение, волновые нагрузки, возможность подтопления.

Большое количество резервуаров хранения.

Межплощадочная перекачка нефтепродуктов по наземному трубопроводу длиной 1,5 км.

Использование эстакад налива, раздаточных, где происходит контакт н/п с атмосферным воздухом.

Наличие морского терминала для танкерного отпуска/приема н/п.

Нерегулярный отпуск н/п различными способами (автоцистерны, танкеры, бочкотара).

Низкий уровень автоматизации: запорная арматура выполнена в ручном исполнении.

2). На основе анализа аварийности на объектах, находящихся в похожих климатических условиях, с близкими объемами хранения и имеющих сходное оборудование, были выбраны следующие типичные последствия аварий (в порядке убывания вероятности):

Разливы нефтепродуктов как на суше, так и на водной поверхности.

Пожары проливов н/п.

Пожары и взрывы в резервуарах.

Горение паров бензина в открытом пространстве при высоких летних температурах.

«Огненные шары» при пожаре на автомобильных цистернах с бензином, которые рассматривались как возможная эскалация аварии при длительном нахождении автоцистерны в открытом пламени.

3). Поражающими факторами рассмотренных аварий являются:

– ударная волна;

тепловое излучение и горячие продукты горения;

открытое пламя и горящие нефтепродукты;

токсичные продукты горения;

осколки разрушенного оборудования, обрушения зданий и конструкций.

4). По величине вероятных зон действия поражающих факторов на персонал объекта и оборудование наиболее опасными сценариями являются следующие:

крупный пожар пролива с выходом нефтепродуктов за пределы обвалования резервуара РВС-3000;

горение облака паров бензина в воздухе.

попадание автоцистерны с бензином в открытое пламя и образование «огненного шара»;

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ 12

Наиболее вероятные сценарии аварий с возникновением пламени на нефтебазах могут происходить по следующей схеме: повреждение технологического трубопровода (арматуры) или

отказ насоса → разлив н/п → пожар пролива.

5). В максимальную гипотетическую аварию могут быть вовлечены следующие количества опасных веществ:

1. При проливе бензина на поверхность воды – до 22 т.

2. При пожаре пролива на РВС-3000 - до 2536,5 т бензина, дизельного или топлива ТС-1.

3. При горении паров бензина в облаке может находиться до 1 т н/п.

4. При возникновении «огненного шара» на автоцистерне - до 10,5 т бензина.

При дрейфе облака с сохранением способности к воспламенению до 350 м;

Среди последствий не учитывалось загрязнение воздуха продуктами горения при пожарах и взрывах, загрязнение воды н/п и осколочное поражение.

Расчеты вероятных зон действия поражающих факторов были проведены с использованием методик, рекомендованных Госгортехнадзором России для проведения анализа риска опасных производственных объектов. Среди них - «Методика оценки последствий аварийных взрывов топливно-воздушных смесей» (РД 03-409-01); ГОСТ 12.3.047-98 ССБТ «Пожарная безопасность технологических процессов. Общие требования. Методы контроля».

Отечественная нормативная база не располагает методическим руководством, позволяющим учитывать особенности рассеяния аварийных выбросов парогазовых облаков тяжелее воздуха. Поэтому в расчетах было использовано Руководство по оценке индустриальных опасностей (Techniques for Assessing Industrial Hazards: a Manual. World Bank Tech. Paper No. 55, The World Bank Group, 1988).

Руководство позволяет определить количество паров н/п, участвующих в создании поражающих факторов, и размеры облака топливовоздушной смеси при его рассеянии до нижнего концентрационного предела воспламенения. Рассматриваемая модель рассеяния описывает нестационарное, турбулентное течение неоднородного потока атмосферного воздуха, переносящего вещество (примесь), в том числе и отличное по плотности от окружающего воздуха из-за разности молекулярных масс и/или наличия аэрозоля и/или охлаждения. Эта модель учитывает такие характерные особенности, которыми обладает распространение тяжелых газов, как наличие отрицательной силы плавучести и подавление турбулентного обмена в облаке газа. Оба эти фактора ослабляют рассеяние вещества в вертикальном направлении, в то время как в горизонтальном направлении, наоборот, наблюдается дополнительное растекание вещества.

Для расчета утечек при разгерметизации межплощадочного трубопровода использовались методы, аналогичные приведенным в РД «Методическое руководство по оценке степени риска аварий на магистральных нефтепроводах», (утв. АК «Транснефть» 30.12.99 приказом №152, согласовано Госгортехнадзором России,1999).

6). Вероятные зоны поражения и разрушения при максимальной гипотетической аварии не выходят за границы 500-метровой санитарно-защитной зоны (СЗЗ) объекта, поэтому гибель населения близлежащих населенных пунктов при авариях на нефтебазе крайне маловероятна. Количество пострадавших из числа персонала при наиболее опасных сценариях аварии может достигать 10 человек. При наиболее вероятных сценариях аварии количество пострадавших не

превысит 1 – 2 чел.

II. Оценка вероятности возникновения аварий

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ 13

Используя обобщенные статистические данные4 , была определена частота возникновения аварий на различных составляющих декларируемого объекта для различного оборудования (Таблица 1). Видно, что наиболее вероятными являются аварии в насосных/раздаточных.

При определении частоты возникновения аварий для различного типа основного оборудования рассматриваемой нефтебазы, в котором обращаются нефтепродукты, учитывались:

количество оборудования и протяженность трубопроводов;

частота возникновения инициирующего события или того или иного исхода.

Следует отметить, что при использовании статистических данных из литературных источников необходимо оценивать степень их достоверности, понимая, что такие данные, как правило, дают лишь порядок величины.

Таблица 1

Частота возникновения аварий с возникновением поражающих факторов– взрывов, пожаров, огненных шаров

III. Расчет показателей риска

С помощью разработанного в ЗАО НТЦ ПБ программного обеспечения ТОКСИ+, позволяющего определять количественные показатели риска аварий, для каждой составляющей объекта были рассмотрены возможные сценарии конкретных аварий в зависимости от времени года, скорости и направления ветра, времени суток. Всего было проанализировано около 300000 конкретных реализаций сценариев. В результате определено пространственное распределение потенциального территориального риска, показывающее частоту реализации поражающего фактора, приводящего к смертельному для человека исходу (год-1 ), как на территории декларируемого объекта, так и на прилегающих площадях. Поле потенциального территориального риска представлено ниже (Рис. 1), из которого следует, что наибольший потенциальный риск возникновения смертельных поражающих факторов наблюдается в районе резервуарных парков (более 10-4 год-1 ). За пределами резервуарных парков потенциальный риск возникновения смертельного поражающего фактора составляет 10-6 – 10-4 год-1 для Береговых сооружений и дамбы, по которой проходит межплощадочный трубопровод. На Косе существуют зоны с потенциальным риском 10-9 – 10-6 год-1 , они расположены над водной акваторией, их наличие обусловлено возможностью образования облаков паров бензина и последующего их сгорания.

4 В.П.Сучков, В.В.Ралюк, Анализ причин и последствий пожаров в резервуарных парках ТЭК и мер по их устранению. В кн.: Безопасность в нефтегазовом комплексе. Материалы конференции. М.: 27 апреля 2000 г. стр. 69.

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ

риск смертельного поражения человека,год–1

Рис. 1 Поле потенциального территориального риска аварий на Н-ской нефтебазе

На основе полученного пространственно-временного распределения потенциального риска, а также, учитывая распределение людей на территории декларируемого объекта, определены коллективные риски гибели различных категорий людей (Таблица 2).

Таблица 2 Коллективный риск (возможное число пострадавших в год) при возникновении аварий на Н-ской нефтебазе

пострадавших,

прилегающая территория

Персонал

Береговые сооружения

Межплощадочный трубопровод

Весь объект

Третьи лица5

Весь объект

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ

Составляющая декларируемого объекта или

пострадавших,

прилегающая территория

Общий коллективный риск

Средний индивидуальный риск гибели персонала составляет 1,5·10-4 год-1 , третьих лиц - 5,3·10-6 год-1 .

Полученные значения частоты поражения персонала (1/год) более определенного количества (Рис. 2) показывают, что наиболее крупная авария для персонала с гибелью не менее 10 человек имеет вероятность 4,4 ×10-4 год-1 .

Для нефтебазы был определен и ожидаемый материальный ущерб от аварий. Ущерб от потери основных производственных фондов может составить около 50 тыс. рублей в год и включает в себя стоимость разрушенного оборудования. Однако основной ущерб следует ожидать от потери нефтепродуктов, в денежном выражении он на порядок будет превосходить ущерб от потери оборудования. Для декларируемого объекта ожидаемый ущерб от потери нефтепродуктов будет составлять около 500 тыс. рублей в год (в предположении о полном выгорании н/п при пожаре).

частота гибели, 1/год

Рис. 2 Частота смертельного поражения более n человек из числа персонала Н-ской нефтебазы (социальный риск), 1/год

Обобщенные показатели риска аварий на нефтебазе, которые следует рассматривать в качестве максимально возможных (консервативных) оценок, приведены ниже (Таблица 3).

На практике существует ряд факторов, снижающих масштабы и вероятность крупных аварийных ситуаций с гибелью людей на опасных производственных объектах:

часть персонала, как правило, находится в помещении, поэтому при возникновении аварий на наружных установках они будут в определенной степени защищены;

– при дрейфе паро-воздушное облако может не достигнуть мест скопления людей, а воспламениться раньше;

при образовании «огненного шара» или воспламенении дрейфующего облака ТВС существует промежуток времени между инициирующим аварию событием и собственно возникновением в данной точке поражающего фактора. При своевременном обнаружении

ЗАО НТЦ ПБ

не занятых в ликвидации аварии, из зоны возможного поражения, что существенно уменьшит возможное число пострадавших;

в резервуарных парках существуют обвалования, ограничивающие дрейф паров н/п (для ограничения распространения облаков «тяжелых» газов достаточно препятствий высотой в несколько метров);

низкие зимние температуры и сильный ветер снижают вероятность образования протяженных облаков топливовоздушных смесей;

выбор частот отказов оборудования и возникновения аварийных ситуаций был сделан на основе оценок «сверху». В реальности значения частот могут быть ниже;

внедрение противоаварийных и противопожарных мероприятий может снизить показатели риска аварий в несколько раз.

Таблица 3 Показатели риска аварий на Н-ской нефтебазе

Наименование показателя риска

Значение

Частота аварийных ситуаций, связанных с возникновением

0,036 год-1

поражающего эффекта (взрыв, пожар или огненный шар)

Общий коллективный риск для всех категорий людей при его

1,65х10-2 чел./год.

эксплуатации

Общий коллективный риск для персонала декларируемого

1,4х10-2 чел./год

Средний индивидуальный риск для персонала объекта

1,5х10-4 год-1

Средний индивидуальный риск

5,3х10-6 год-1 ;

третьих лиц не более

Частота возникновения аварийных ситуаций с гибелью людей на

около 1х10-2 год-1

Частота возникновения аварийных ситуаций с гибелью не менее

около 4х10-4 год-1

10 человек

Ожидаемый ущерб от потери продукции

500 тыс. руб./год

Риск потери основных фондов от аварии

50 тыс. руб./год

Риск потери продукции от аварии

Проведена количественная оценка риска аварий на типичном объекте нефтепродуктообеспечения топливно-энергетического комплекса.

Для рассматриваемого объекта – Н-ской нефтебазы:

- выявлены наиболее опасные участки, сооружения и оборудование;

- показано, что риск гибели населения и третьих лиц от аварий на нефтебазе является приемлемым;

- выход поражающих факторов за СЗЗ ОПО при авариях на рассматриваемом объекте является маловероятным и не угрожает населению и окружающим объектам;

- определен вклад аварий с участием отдельных видов нефтепродуктов в общие показатели риска аварий на Н-ской нефтебазе;

- подтверждена адекватность планируемых эксплуатирующей организацией мер по обеспечению промышленной безопасности выявленным опасностям (монтаж быстродействующей запорной и отсечной арматуры с дистанционным управлением, оборудование помещений автоматическими газоанализаторами, световой и звуковой сигнализацией, оснащение резервуаров приборами контроля, сигнализации уровня и трубопроводов предохранительными устройствами и др).

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ 17

Приведенная методология может быть принята за основу при разработке нормативных методик (стандартов) оценки риска и деклараций пожарной и промышленной безопасности объектов хранения нефти и нефтепродуктов.

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ

В. ОЦЕНКА РИСКА АВАРИЙ И ПОЖАРОВ НА ОПАСНЫХ ПРОИЗВОДСТВЕННЫХ ОБЪЕКТАХ МАГИСТРАЛЬНОГО ТРУБОПРОВОДНОГО ТРАНСПОРТА

(по материалам ФГУП «НТЦ «Промышленная безопасность», ВНИИГАЗ, 2000-2004,2007, (Гражданкин А.И., Дадонов Ю.А., Дегтярев Д.В., Лисанов М.В., Печеркин А.С., Сафонов В.С., Сидоров В.И., Сумской С.И., Швыряев А.И.и др.)

1. Анализ риска при оценке безопасности магистральных трубопроводов

1.1. Необходимость анализа риска

Для анализа риска аварий на объектах трубопроводного транспорта в настоящее время внедряется методология количественной оценки риска.

Проведение анализа риска, включающего идентификацию опасностей, оценку риска и выработку обоснованных рекомендаций по обеспечению безопасности, связано с необходимостью оценки возможности реализации опасностей и их последствий.

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ 19

В настоящее время результаты анализа риска используются при декларировании промышленной и пожарной безопасности, проектировании опасных производственных объектов, подготовки паспортов безопасности, планов по локализации аварийных ситуаций, ликвидации разливов нефти нефтепродуктов, обосновании специальных технических условий на проектирование в соответствии со следующими документами:

1. Федеральный закон «О техническом регулировании» (№184-ФЗ от 27.12.02);

2. Федеральный закон “О промышленной безопасности опасных производственных объектов” от 21.07.97 № 116-Ф3;

3. Федеральный закон “О газоснабжении в Российской Федерации” (принят Государственной Думой 12.03.99);

4. Федеральный закон от 2 июля 2008 г. №123-ФЗ "Технический регламент о требованиях пожарной безопасности»

5. Технический регламент «О безопасности машин и оборудования (утв.

6. Нормативные правовые акты по декларированию промышленной безопасности (РД–03-14-2005, ПБ 03-314-99);

7. Постановление Правительства Российской Федерации от 21 августа 2000 года № 613 «О неотложных мерах по предупреждению и ликвидации аварийных разливов нефти нефтепродуктов»;

8. Постановление Правительства Российской Федерации от 15 апреля 2002 года № 240 «О порядке организации мероприятий по предупреждению и ликвидации разливов нефти и

нефтепродуктов на территории Российской Федерации»;

9. О составе разделов проектной документации и требованиях к их содержанию (Постановление Правительства Российской Федерации от 16.02.2008г. №87)

10. «Требования по предупреждению чрезвычайных ситуаций на потенциально опасных объектах и объектах жизнеобеспечения» (Приказ МЧС РФ от 28.02.03 №105)

11. Методические указания о порядке разработки плана локализации и ликвидации аварийных ситуаций (ПЛАС) на химико-технологических объектах (РД 09-536-03, Постановление Госгортехнадзора России от 18.04.03 № 14);

12. Правила безопасности в нефтяной и газовой промышленности (ПБ 08-624-03, Постановление Госгортехнадзора России от 05.06.03 № 56) др. НТД, в т.ч. утвержденных МЧС РФ (паспорт безопасности опасного объекта).

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ

1.2. Методическое обеспечение анализа риска аварий на магистральных трубопроводах

С целью установления единых подходов к анализу риска Госгортехнадзором России с участием ряда экспертных организаций, компаний (ОАО «АК «Транснефть», ОАО «Газпром»), ведущих специалистов создана система нормативно-методических документов в области количественного анализа риска аварий, в том числе связанных с пожарами и экологическим ущербом.

В таблице 1 представлены наиболее важные методические документы, достоверно описывающие все многообразие аварийных процессов и позволяющие с достаточно точностью оценивать опасности эксплуатации магистральных трубопроводов.

Табл. 1.Перечень моделей и методов расчета, применяемых при анализе риска аварий магистральных трубопроводов

Наименование использованных

Утверждено,

Предназначение

моделей и методов

согласовано

РД 03-418-01 “Методические

Утв. Пост.

Методология анализа риска,

указания по проведению анализа

Госгортехнадзора

включая терминологию,

риска опасных производственных

России от 10.07.01

описание основных методов,

объектов”

процедур анализа риска

РД “Методическое руководство по

утв. ОАО «АК «Транс-

Определение частоты и

оценке степени риска аварий на

нефть» 30.12.99

массы утечек, определение

магистральных нефтепроводах”

приказом №152,

массы безвозвратных потерь

согласовано

нефти и ущерба на линейной

Госгортехнадзором

России,1999

РД “Методика определения

утв. Минтопэнерго

Определение плат за

ущерба окружающей природной

загрязнение окружающей

среде при авариях на

АК «Транснефть»,

среды нефтью и

магистральных нефтепроводах”.

нефтепродуктами

СТО РД Газпром 39-1.10.-084-

утв. ОАО “Газпром”,

Метод количественного

2003. Методические указания по

2003, согласована

анализа риска аварий на

проведению анализа риска для

Госгортехнадзором

магистральных газопроводах.

опасных производственных

Статистические данные по

объектов газотранспортных

аварийности, определение

предприятий ОАО «Газпром»

показателей риска

РД 03-409-01 “Методика оценки

Утверждена

Расчет зон поражения при

последствий аварийных взрывов

Постановлением

горении и взрыве облаков

топливно-воздушных смесей”6

Госгортехнадзора

топливно-воздушных смесей

России от 26.06.01

Методика оценки последствий

Согласована

Оценка последствий и расчет

химических аварий (методика

Госгортехнадзором

зон поражения при авариях с

"ТОКСИ" -2)

России письмом от

выбросом опасных веществ

(«легких газов»)

№ 10-03/342), НТЦ

«Промышленная

безопасность», 1999

РД-03-26-2007 «Методические

Утверждены

Оценка последствий аварий,

указания по оценке последствий

приказом

основанная на модели

аварийных выбросов опасных

Федеральной службы

веществ»

по экологическому,

распространения

технологическому и

газообразных опасных

атомному надзору от

веществ в атмосфере, в том

14.12.2007 г. № 859

числе для оценки дальности

дрейфа облаков топливно-

воздушных смесей

ССБТ. ГОСТ Р 12.3.047–98.

ГОСТ-Р, М.:

Определение зон поражения

Пожарная безопасность

Госстандарт России,

при пожаре пролива и

технологических процессов.

образовании “огненного

Общие требования. Методы

контроля.

Методический документ РД 03-418-01 рассматривает процедуру анализа риска как составную часть управления промышленной безопасностью (или в общем случае - управления риском). Основные задачи анализа риска аварий на опасных производственных объектах заключаются в предоставлении лицам, принимающим решения:

объективной информации о состоянии промышленной безопасности объекта,

сведений о наиболее опасных, «слабых» местах с точки зрения безопасности,

В документе даны определения количественных показателей риска (индивидуального, социального, коллективного, потенциального территориального риска и ожидаемого ущерба).

Наиболее эффективен анализ риска при:

обосновании технических (проектных) решений, особенно при внедрении, проектировании новых технологий, сооружений, для которых нередко отсутствуют нормы безопасности;

определении масштабов воздействия поражающих факторов аварий и безопасных

расстояний;

выборе вариантов размещения объекта, сооружений и технических устройств по критериям риска;

обеспечении безопасности персонала, населения, окружающей природной среды;

учете экономических вопросов при выполнении требований безопасности («затраты-выгода-безопасность»).

Применительно к оценке риска аварий на трубопроводных системах следует выделить РД “Методическое руководство по оценке степени риска аварий на магистральных

нефтепроводах” (утв. АК “Транснефть” 30.12.99 приказом №152, согласовано Госгортехнадзором России,1999) и СТО РД Газпром 39-1.10.-084-2003. Методические указания по проведению анализа риска для опасных производственных объектов газотранспортных предприятий ОАО «Газпром».

Так, с помощью Методического руководства по оценке степени риска аварий на магистральных нефтепроводах можно рассчитать интегральные (по всей длине трассы нефтепровода) и удельные (на единицу длины нефтепровода (обычно 1 км)) значения:

частоты утечки нефти в год;

ожидаемых потерь нефти от аварий;

ожидаемого ущерба (как суммы ежегодных компенсационных выплат за загрязнение окружающей среды) и других показателей риска.

В основе расчета частоты аварий в этих руководствах используется принцип балльной оценки риска и технического состояния линейной части магистральных трубопроводов, который основан на количественной оценке значимости факторов, влияющих на риск аварий. В общем

случае число факторов влияния и особенности алгоритма оценки риска могут варьироваться в

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ 22

зависимости от объема доступной информации, поставленной задачи и специфики трубопровода.

Прогноз частоты аварийных утечек из магистральных нефтепроводов (МН) проводится

с учетом 40 факторов влияния, которые объединены в следующие группы:

внешние антропогенные воздействия;

− коррозия;

качество производства (применяемых или существующих) труб;

− качество строительно-монтажных работ;

конструктивно-технологические факторы;

природные воздействия;

эксплуатационные факторы;

дефекты металла трубы и сварных швов.

Оценка степени риска всей трассы проводится на основе идентификации опасностей и оценки риска отдельных участков (секций), характеризующихся примерно одинаковым распределением удельных показателей риска по всей длине участка (обычно длина участка - 1-3 км).

При оценке последствий аварий используются известные модели истечения несжимаемой жидкости (нефтепродуктопроводы), двухфазного истечения (трубопроводы для перекачки широкой фракции лёгких углеводородов (ШФЛУ), аммиакопроводы) и газодинамики (газопроводы).

Так, при гидравлическом расчете объемов утечки жидкого продукта используются следующие предположения.

Количество нефти, которая может вытечь при аварии, является вероятностной функцией, зависящей от следующих случайных параметров:

места расположения и площади дефектного отверстия;

интервала времени с момента возникновения аварии до остановки перекачки (принимающего значения от 3-20 мин. для крупных разрывов и до нескольких часов для малых

утечек, которые трудно зафиксировать приборами на НПС);

продолжительности истечения нефти с момента остановки перекачки до закрытия

задвижек;

времени прибытия аварийно-восстановительных бригад (от десятков минут до нескольких часов) и эффективности мер по локализации аварии.

Остальные параметры и условия перекачки (диаметр нефтепровода, профиль трассы,

характеристики насосов, установка на защиту и т.п.) могут считаться постоянными и использоваться в качестве исходных данных.

Экологический ущерб от аварий производится в соответствии с Постановлением Правительства РФ от 28.08.92 N 632 «Об утверждении Порядка определения платы и ее предельных размеров за загрязнение окружающей природной среды, размещение отходов, другие виды вредного воздействия». В расчетах учитывается эффективность действий аварийноспасательных сил при локализации аварий и сборе разлившегося продукта.

Алгоритм количественной оценки риска представлен в следующем пункте (1.3) Полученные показатели риска участков трассы могут быть предназначены для выявления

приоритетов в мероприятиях обеспечения безопасности, в том числе выбора оптимальной стратегии технического обслуживания, диагностики и ремонта трубопровода.

С целью повышения качества работ по анализу риска в рамках Системы экспертизы промышленной безопасности Госгортехнадзора России проводится аттестация экспертов и аккредитация организаций в области декларирования промышленной безопасности и анализа риска. В области экспертизы деклараций объектов нефтяной и газовой промышленности (включая магистральные трубопроводы) аттестовано 25 экспертов и аккредитована 21 организация.

ЗАО НТЦ ПБ

ПРИМЕРЫ РАСЧЕТА ПОЖАРНОГО РИСКА ПРИ АВАРИЯХ 23

1.3. Методологические основы оценки экологической безопасности магистральных трубопроводов (в рамках процедуры декларирования промышленной безопасности опасных производственных объектов)

Под экологической безопасностью нефтяных и газовых трубопроводов понимается свойство этих объектов сохранять при функционировании такое состояние, при котором ожидаемый вред, причиняемый природе и здоровью человека, не превышает допустимого по социально-экономическим соображениям: т.е. совокупная польза от эксплуатации трубопровода должна быть существенно выше величины возникающих экологических ущербов. Только в противном случае можно утверждать о проявлении угрозы экологической безопасности рассматриваемого объекта.

Кроме того, в настоящем обзоре приняты следующие основные определения, изложенные в "Методических указаниях по проведению анализа риска опасных производственных объектов" (РД 03-418-01) :

Авария – разрушение сооружений и (или) технических устройств, применяемых на опасном производственном объекте (ОПО), неконтролируемые взрыв и (или) выброс опасных веществ (ст. 1 Федерального закона «О промышленной безопасности опасных производственных

объектов» от 21.07.97).

Опасность аварии – угроза, возможность причинения ущерба человеку, имуществу и(или) окружающей среде вследствие аварии на опасном производственном объекте. Опасности аварий на опасных производственных объектах связаны с возможностью разрушения сооружений и (или) технических устройств, взрывом и (или) выбросом опасных веществ с последующим причинением ущерба человеку, имуществу и (или) нанесением вреда окружающей природной среде.

Ущерб от аварии - потери (убытки) в производственной и непроизводственной сфере жизнедеятельности человека, вред окружающей природной среде, причиненные в результате аварии на опасном производственном объекте и исчисляемые в денежном эквиваленте.

Риск аварии – мера опасности, характеризующая возможность возникновения аварии на опасном производственном объекте и тяжесть ее последствий. Основным количественными показателем риска аварии является в том числе и ожидаемый ущерб – математическое ожидание величины ущерба от возможной аварии, за определенное время.

В общем случае потери в производственной и непроизводственной сфере жизнедеятельности человека и вред окружающей природной среде проявляются не только в результате аварии, но и при штатной эксплуатации ОПО. Поэтому полный7 риск R эксплуатации ОПО количественно может быть оценен математическим ожиданием ущерба Y при функционировании объекта:

где P (B i ) вероятность причинения i -го вреда y i человеку и окружающей природной среде при аварии на ОПО, а y nj - размер j -го среднего вреда, причиняемого человеку и окружающей природной среде при штатной эксплуатации ОПО (в частности сюда относятся платы за загрязнение окружающей среды y ЭКО и вред, наносимый здоровью человека вследствие профессиональных заболеваний y МЕД , при нормативном

функционировании предприятия).

Для упрощения дальнейшего изложения риск травмирования персонала включен в риск аварии, поэтому выражение (3) можно представить для наглядности в виде системы:

R = R A + R ШТАТН

R A = ∑ P (B i ) y i

i= 1

Например, оценка величины y ЭКО на стадии проектирования проводится с помощью

процедуры ОВОС (оценка воздействия предполагаемой деятельности на окружающую среду), а на стадии эксплуатации - с помощью действующих нормативно-разрешительных документов предприятия – томов предельно допустимых выбросов (ПДВ) загрязнителей в атмосферный воздух, предельно допустимых сбросов (ПДС) загрязняющих веществ в водные объекты и лимитов размещения отходов.

Оценка же величины риска аварии R A , как на этапе проектирования, так и на этапе

эксплуатации ОПО проводится в рамках процедуры декларирования промышленной безопасности ОПО.

Специфика технологии трубопроводного транспорта накладывает существенный отпечаток на тот факт, что состояние экологической безопасности нефтяных и газовых трубопроводов определяется, главным образом, возможностью причинения при аварии максимального единовременного вреда окружающей среде.

Поэтому подробнее остановимся на основных методах оценки риска аварииR A . Для этого

сначала определим событие причинения i -го вреда y i человеку и окружающей природной среде при аварии на ОПО В i :

Bi = A ∩ Ci ,

– событие А – авария на ОПО (нерасчетное внезапное высвобождение энергии);

– событие С i – реализация аварии по i -му сценарию,

Т.к. события А и С i являются совместными, то искомая вероятность события, связанного с причинение i -го вреда y i человеку и окружающей природной среде при аварии на ОПО определяется как:

P (B i ) = P (A ∩ C i ) = P (A ) P (C i | A ) .

Подставив выражение (6) в формулу (4), получим для риска аварии R A .

Анализ риска аварий металлургического предприятия

Мухангалиев Ернар,

Карагандинский государственный технический университет.

Научный руководитель – доктор технических наук, профессор

Исагулов Аристотель Зейнуллинович.

Авария разрушение сооружений и (или) технических устройств, применяемых на опасном производственном объекте, неконтролируемые взрыв и (или) выброс опасных веществ [Закон «О промышленной …» ].

Риск аварии – это, прежде всего, мера опасности, характеризующая возможность возникновения аварии на опасном производственном объекте (ОПО) и тяжесть ее последствий.

Анализ риска аварии - процесс идентификации опасностей и оценки риска аварии на опасном производственном объекте для отдельных лиц или групп людей, имущества или окружающей природной среды.

Основными количественными показателями риска аварии являются:

- технический риск – вероятность отказа технических устройств с последствиями определенного уровня (класса) за определенный период функционирования опасного производственного объекта;

- индивидуальный риск – частота поражения отдельного человека в результате воздействия исследуемых факторов опасности аварий;

- потенциальный территориальный риск (или потенциальный риск) – частота реализации поражающих факторов аварии в рассматриваемой точке территории;

- коллективный риск – ожидаемое количество пораженных в результате возможных аварий за определенный период времени;

- социальный риск , или F/N кривая – зависимость частоты возникновения событий F, в которых пострадало на определенном уровне не менее N человек, от этого числа N. Характеризует тяжесть последствий (катастрофичность) реализации опасностей;

- ожидаемый ущерб – математическое ожидание величины ущерба от возможной аварии за определенный период времени.

Приемлемый риск аварии – риск, уровень которого допустим и обоснован исходя из социально – экономических соображений. Риск эксплуатации объекта является приемлемым, если ради выгоды, получаемой от эксплуатации объекта, общество готово пойти на этот риск.

Основные вопросы анализа риска аварий:

1)Идентификация опасностей (Что негативного может произойти? Каковы причины?).

2)Анализ частоты (Какова вероятность возникновения негативных событий?).

3)Анализ последствий (Какие могут быть последствия?).

Результаты анализа риска аварий используются при принятии решений по обеспечению безопасности в ходе архитектурно-строительного проектирования на новое строительство, реконструкцию, капитальный ремонт, расширение, техническое перевооружение, ликвидацию и консервацию объектов капитального строительства опасных производственных объектов, при декларировании промышленной безопасности опасных производственных объектов, экспертизе промышленной безопасности, обосновании технических решений по обеспечению безопасности, страховании, экономическом анализе безопасности по критериям «стоимость – безопасность – выгода», оценке воздействия хозяйственной деятельности на окружающую природную среду и при других процедурах, связанных с анализом безопасности [Акинин Н.И.].

Основные задачи анализа риска аварий на опасных производственных объектах заключаются в представлении лицам, принимающим решения:

Объективной информации о состоянии промышленной безопасности объекта;

Сведений о наиболее опасных, «слабых» местах с точки зрения безопасности;

В настоящее время предприятия металлургического комплекса Казахстана находятся в сложном положении из-за непрерывного старения производственных фондов, низкого технического уровня производства. Предприятия металлургического комплекса, с точки зрения возникновения техногенных аварий, отличают:

- большие объемы веществ и материалов, в том числе химически опасных;

- значительные тепловые излучения;

- использование в технологических процессах мощных агрегатов, машин и механизмов, создающих промышленные опасности;

- расположение предприятий вблизи крупных населенных пунктов, а также вблизи рек и водоемов;

- использование в технологических процессах и их обслуживании большого количества трудовых ресурсов.

На предприятиях металлургического комплекса имеет место значительный физический износ листовых линейно протяженных металлических конструкций (ЛЛПМК), к которым относятся трубопроводы большого диаметра (более 1400 мм) для транспортирования коксового, доменного и других технологических газов, низкий уровень обеспечения технологическими средствами безопасности, что неизбежно приводит к возникновению инцидентов и аварий . Коэффициент износа основных фондов предприятий черной металлургии составляет около 40%, в цветной металлургии – 50 % (табл. 1).

Таблица 1.

Состояние технологического оборудования предприятий горно-металлургического комплекса.

Предприятие

Износ, %

ТОО «Корпорация «Казахмыс»

АО «ПК «Южполиметалл»

АО «Казцинк»

АО «ТНК «Казхром»

ТОО «Алел»

ТОО «ИРЗК»

АО «Арселор Миттал Темиртау»

15-45, отдельное оборудование – до 80

АО «Алюминий Казахстана»

АО «УКТМК»

Современное состояние вопроса.

Несмотря на совершенствование процессов и технологий в металлургическом производстве, положение в сфере промышленной безопасности не улучшается, число аварий и уровень травматизма на металлургических предприятиях остаются высокими. Предприятия металлургического комплекса, с точки зрения возникновения техногенных аварий, отличают: большие объемы веществ и материалов, в том числе химически опасных; значительные тепловые излучения; использование в технологических процессах мощных агрегатов, машин и механизмов, создающих промышленные опасности; большие территории; расположение предприятий вблизи крупных населенных пунктов, а также вблизи рек и водоемов; использование в технологических процессах и их обслуживании большого количества трудовых ресурсов. [Бикмухаметов М.Г.]

На металлургических предприятиях Казахстана одним из основных факторов, повышающих риск аварий на опасных производственных объектах, продолжает оставаться высокая степень износа основных производственных фондов на фоне низкой инвестиционной и инновационной активности в металлургической промышленности. Поэтому проблема обеспечения промышленной безопасности становится еще более актуальной.

Основой анализа риска аварий являются идентификация опасных и вредных производственных факторов, признаки опасных производственных объектов, характеристики технологических и производственных операций, квалификация кадров, техническое состояние оборудования, зданий и сооружений. Такие разработки позволяют выработать рекомендации по прогнозированию и предупреждению взрывов и пожаров при авариях на опасных производственных объектах металлургического производства.

Изложение основных материалов исследования.

К наиболее тяжелым последствиям, приносящим материальный ущерб и групповые несчастные случаи, приводят аварии на взрывопожароопасных производствах, имеющихся на каждом крупном металлургическом предприятии. По количеству аварий, связанных со взрывами и пожарами, металлургическая промышленность стоит на втором месте – после химической промышленности, число пожаров и взрывов в которой в 4–5 раз меньше, чем в химической отрасли, но превышает число взрывов в других отраслях промышленности.

За 2010 год

По сравнению с 2009 годом за 2010 год количество чрезвычайных ситуаций на производстве снизилось на 27,6 % (на 79 случаев).

Количество пострадавших снижено на 28,3 % (на 96 человек), погибших на 30,1 % (на 58 человек).

Произошло 4 групповых несчастных случая, при которых погибло 8 человек и 2 были тяжело травмированы, за 2009 год - 4 групповых случая, при которых погибло 6 человек и 7 тяжело травмировано.

На предприятиях и объектах, подконтрольных территориальным органам МЧС в области промышленной безопасности за 2010 год по сравнению с 2009 годом травматизм с тяжелым исходом снижен в 2 раза, травматизм со смертельным исходом в 1,4 раза.

Основной причиной несчастных случаев являются обрушения горной массы, низкий уровень производственной дисциплины и организации работ, личная неосторожность пострадавших. [Разработка типовых сценариев…]

За 9 месяцев 2011 года:

По сравнению с прошлым годом за отчетный период количество чрезвычайных ситуаций на производстве снизилось на 25,1 % (на 44 случая). Количество пострадавших снижено на 21,3 % (на 42 человека), погибших на 32,7 % (на 35 человек).

На предприятиях и объектах, подконтрольных территориальным органам МЧС в области промышленной безопасности за 9 месяцев 2011 года в результате несчастных случаев на опасных производственных объектах погибли 14 человек, тяжело травмированы 18 человек. За этот же период 2010 года тяжело травмированы 13 человек, 17 человек погибли.

Основной причиной несчастных случаев являются нарушение технологических процессов, недостатки в организации и осуществлении производственного контроля, низкий уровень трудовой, производственной дисциплины и организации работ, личная неосторожность пострадавших.

Для организации безопасной работы оборудования и агрегатов на металлургическом предприятии создается система управления промышленной безопасностью, обеспечивающая выполнение ряда организационных и технических мероприятий, направленных на своевременное выполнение требований промышленной безопасности, мониторинг технического состояния оборудования и агрегатов и снижение риска возникновения аварий.

Одна из составляющих системы управления промышленной безопасностью металлургического предприятия – анализ риска аварий, включающий идентификацию опасных веществ и оценку риска аварий для людей, имущества и окружающей среды. Для выяснения последствий и ущерба техногенных аварий необходимо определить: тип аварии – по причине взрывов, пожаров, утечки горючих материалов; род веществ «участвующих» в аварии – горючие газы, легковоспламеняющиеся и горючие жидкости, пыли, взрывчатые вещества; причина возникновения взрыва, пожара. [Сысоев Н.В.]

Анализ риска аварий металлургического предприятия (МП) состоит из следующих этапов: предварительного, анализа состояния предприятия, идентификации опасностей и оценки риска аварий, разработки рекомендаций по уменьшению риска (рис.1).

Рис. 1. Схема этапов анализа риска аварий на металлургическом предприятии.

На первом этапе (предварительном) анализе риска аварий изучается информация об эксплуатации опасных производственных объектов металлургического предприятия. Рассмотрим опасные производственные объекты металлургического предприятия полного цикла, включающее: агломерационное, коксохимическое, доменное, сталеплавильное, прокатное производства [Исследование условий…].

Агломерационное производство. В технологическом процессе агломерационного производства применяются кокс, коксовая мелочь, антрацитовый штыб, которые являются сгораемыми веществами, поэтому участки, на которых они обращаются (отделения дробления и грохочения коксика, коксовой мелочи и антрацитового штыба, вагоноопрокидыватели для их разгрузки; склады коксика и антрацитового штыба, приемные бункера коксика и угольного штыба, корпус брикетирования брикетной фабрики), относятся к категории пожароопасных объектов. Кроме этого, в агломерационных цехах для смазки механического оборудования, расположенные в отдельных помещениях, станции централизованной автоматической смазки представляют собой пожарную опасность.

Участки, связанные с дроблением (измельчением) топлива (корпус дробления угля, отделения дробления и грохочения угля), являются взрывопожароопасными, так как при измельчении выделяются взрывоопасные пыли. Взрывы пылей сопровождаются возникновением больших давлений (до 10 кг/см2). Отделения, участки, связанные с тепловой обработкой и последующим охлаждением агломерата, сжиганием топлива (корпус агломерации, отделение охлаждения агломерата и его сортировки, отделения обжига известняка, корпуса карбонизации и сортировки брикетов и их сушки, погрузки горячего агломерата в полувагоны) относятся к опасным объектам, на которых выделяется лучистое тепло, искры и пламя [Разработка справочных материалов…].

Коксохимическое производство. Коксохимическое производство является одним из наиболее взрывопожароопасных на металлургическом предприятии. В его состав входят: участки углеподготовки, коксосортировки, загрузки шихты в коксовую печь и выдачи шихты, основными опасностями которых являются пыль и коксовый газ. Легко воспламеняющийся коксовый газ является продуктом сухой перегонки каменного угля в коксовых печах и представляет собой механическую смесь различных газов и паров, содержащую до 60% водорода, до 25% метана, до 5% оксида углерода, 2% различных более сложных углеводородов, а также инертные газы. В цехах улавливания углеводородов бензольной фракции в состав получаемых легковоспламеняющихся жидкостей входят бензол, толуол, изомеры ксилола. Важнейшей характеристикой потенциальной взрывопожароопасности газовоздушных и парогазовоздушных смесей, а также горючих пылей, обращающихся в коксохимическом производстве, является максимальное давление взрыва, которое может достигать 900 кПа. Тепловая энергия взрыва паров веществ (находящихся в объеме оборудования), выделяющаяся при взаимодействии различных органических жидкостей с кислородом, содержащимся в 1 м3 воздуха, приблизительно одинакова и составляет около 4000 кДж. [Смирнов Н.В.]

Повышенную пожарную опасность в коксохимическим производстве представляют ленточные транспортеры, укрытые в протяженных транспортерных галереях, по которым подается уголь, шихта, кокс. Галереи имеют горючую транспортерную ленту длиной до нескольких сот метров, по которой проходит нагретый до 150ºС кокс и где создается постоянная тяга воздуха, быстро распространяющая огонь. Даже самый маленький очаг горения в замкнутом объеме галереи быстро развивается до размеров большого пожара. При пожаре транспортерная лента нередко разрывается и падает вниз, образуя большой очаг горения и разрушений.

Доменное производство. Доменное производство относится к категории взрывопожароопасных производственных объектов, на котором используются, образуются, транспортируются горючие и воспламеняющиеся вещества – жидкости, газы, пыли, способные самовозгораться, а также возгораться от источника зажигания и самостоятельно гореть после его удаления, а также расплавы черных металлов. К авариям на доменных печах относятся случаи выхода из строя технологического оборудования, конструкций и сооружений на доменных печах, приводящие к необходимости изменения режима их работы или к остановке, проведения восстановительных ремонтов или замены оборудования и устройств, создающих повышенную опасность для работы печи и обслуживающего персонала.

Причинами возникновения взрывов и пожаров в доменных цехах являются взрывы газов и взрывы вследствие встречи жидкого чугуна или шлака с водой или влажными материалами. В отличие от других металлургических агрегатов в доменных печах в качестве топлива может использоваться угольная пыль. Установки для вдувания угольной пыли взрывоопасны; такую же опасность представляют отделения шаровых мельниц, где приготавливают пыль, а также распределительно–дозировочные отделения.

Сталеплавильное производство. В мартеновском, конвертерном и сталеплавильном производствах металлургического предприятия обращаются вещества и материалы в горячем, раскаленном и расплавленном состояниях, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени. В кислородно–конвертерных цехах взрывы и выбросы жидкого металла могут происходить в результате загрузки влажной шихты и металлолома. Вначале осуществляется загрузка шихты в конвертеры и сразу же после этого производится заливка чугуна и чем больше влаги будет в шихте, тем большим будет выброс расплавленного металла. Выбросы жидкого металла могут происходить также в случае, когда в жидкий металл вводят влажные раскислители и легирующие материалы. Причиной выбросов металла из конвертера может быть также попадание в него с металлоломом закрытых металлических сосудов с горючими жидкостями, маслами и водой. Кроме опасности выброса жидкого металла, существует опасность прогара футеровки сталеплавильных агрегатов [Бикмухаметов М.Г.].

Особенностью конвертерных цехов является опасность пожара от попадания на горючие материалы жидкого шлака при кантовании шлаковой чаши. Характерной особенностью конвертерных печей является потребление большого количества кислорода, поступающего в цех по наружным сетям. При этом до кислородно-расширительного пункта кислород идет обычно под избыточным давлением 3,5 мПа, а в цех поступает под избыточным давлением 1,6 мПа.

Пожарная опасность сталеплавильных цехов также заключается в наличии большого количества кабельных коммуникаций, маслоподвалов и маслотоннелей.

Участки газоочистки технологических газов мартеновских, электросталеплавильных печей и конвертеров являются взрывопожароопасными. Пожарная опасность электросталеплавильного производства определяется наличием в агрегатах горючих газов, применением кислорода, наличием кабельного хозяйства, масляных трансформаторов, применением для смазки изложниц (как и в мартеновских и в конвертерных процессах) наряду с обезвоженной смолой горючих жидкостей (петролатум, битумный лак и др.).

Определенную пожарную опасность представляют машины непрерывного литья заготовок. Разрыв резиновых шлангов гидросистем с маслом приводит к попаданию масла на раскаленные слябы и моментальному возникновению пожара [Аханченко А.Г.].

Производство и потребление кислорода. Для интенсификации многих пирометаллургических процессов в черной металлургии в больших количествах применяется кислород. Так, только крупный конвертер современного металлургического комбината потребляет до 2000м3/ч кислорода, а весь металлургический комбинат расходует до 350 тыс.м3/ч кислорода.

Многие металлургические предприятия имеют установки разделения воздуха, компрессорные и газгольдерные станции, кислородно-расширительные и распределительные пункты. Обилие технических устройств, широкая сеть кислородопроводов, питающих кислородопотребляющие пирометаллургические агрегаты, – все это требует знания правил обращения с кислородом и нередко приводит к пожарам и травмам персонала. Источником воспламенения могут быть: посторонние искрообразующие и горючие предметы, случайно оставленные в кислородопроводах при их монтаже; искра, возникшая при механическом взаимодействии металлических предметов. В местах производства и потребления кислорода высока опасность возникновения пожаров электрических сетей и устройств (при замыкании проводов, перегрузке двигателей, загорании пропитанной органическими веществами изоляции).

Взрывную опасность представляют воздухоразделительные аппараты вследствие накопления в них взрывоопасных примесей (ацетилен, масло и др.), присутствующих в небольших количествах в перерабатываемом воздухе. Возможны также взрывы в компрессорах (из–за трения или сгора- ния уплотнителя), кислородных газификаторах (при плохом обезжиривании), насосах для жидкого кислорода (при попадании масла).

Прокатное производство. По способу производства прокатные цеха подразделяются на цеха горячей и холодной прокатки, в которых имеется большое количество пожароопасных участков, а некоторые вспомогательные производства в них являются взрывопожароопасными (маслоподвалы, маслотоннели, кабельные сооружения, насосно-аккумуляторные станции, мастерские ревизии подшипников). Пожароопасные участки в основном расположены ниже нулевой отметки цеха, что предъявляет к ним повышенные требования по обеспечению пожарной безопасности.

Определенную пожарную опасность представляют термические печи. В качестве защитного газа в них часто применяется водородно-азотная смесь (95% водорода и 5% азота). С учетом больших размеров цехов наличие водорода не влияет на взрывоопасность производства, так как объем взрывоопасной смеси в случае утечки водорода из трубопровода значительно меньше 5% свободного объема цеха, и взрывоопасной будет только верхняя часть цеха [Исследование условий восстановления…].

В мастерских по ремонту подшипников пожарную опасность представляют обращающиеся в технологическом процессе для промывки и смазки подшипников керосин и различные масла (температура вспышки паров керосина ниже 610С).

Анализ риска аварий дает возможность оценить степень опасности металлургического производства для людей и окружающей среды, состояние его промышленной безопасности, и на основании полученной информации разработать рекомендации по улучшению состояния промышленной безопасности на металлургическом комбинате. Процесс анализа риска носит объективный и всесторонний характер, для чего необходимо разрабатывать методики оценки риска аварий с учетом особенностей металлургического производства. В расчете величины риска используются две составляющие: вероятностная оценка возникновения аварии и возможный материальный ущерб оборудования от этой аварии. Выражение для расчета оценки риска аварийности имеет вид:

где P ав.сит.j – вероятность возникновения аварийной ситуации на i–том оборудовании; Y ав.сит.j – возможный материальный ущерб от возникновения аварийной ситуации на i–том оборудовании; n – количество оборудования производственного процесса. [Сысоев А.А.]

На состояние аварийности и промышленной безопасности на металлургических и коксохимических предприятиях негативно влияют следующие факторы:

Физический износ технологического оборудования;

Несвоевременное и некачественное проведение капитального и текущего ремонта оборудования, зданий и сооружений;

Эксплуатация оборудования с отработанным нормативным сроком;

Применение несовершенных технологий;

Неконтролируемое сокращение численности квалифицированных специалистов и производственного персонала;

Снижение качества профессиональной подготовки производственного и ремонтного персонала.

Также анализ аварийности и травматизма показал, что основными причинами аварий являются конструктивные недостатки, нарушения при строительстве и эксплуатации оборудования.

Все вышеизложенное приводит к выводу, что обеспечение надежности и безопасности листовых линейно протяженных металлических конструкций потенциально опасных объектов в настоящее время является чрезвычайно острым и актуальным вопросом. Для его решения применяются в основном два направления: постоянный мониторинг технического состояния и установление технического состояния конструкций на основе применения современных методов неразрушающего контроля с оценкой остаточного ресурса и определением срока его последующей безопасной эксплуатации.

Литература

1.Закон Республики Казахстан от 3.04.2002 года №314-II «О промышленной безопасности на опасных производственных объектах».

2.Акинин Н.И. Анализ причин аварий и травматизма на опасных производственных объектах // Металлург. – 2004. – №10. – С.23–25.

3.Аханченок А.Г. Пожарная безопасность в черной металлургии // М.: Металлургия. – 2001. – 133с.

4.Бикмухаметов М.Г., Черчинцев В.Д., Сулейманов М.Г. Совершенствование методики оценки риска возникновения аварийных ситуаций предприятий черной металлургии // Металлург. – 2004. – №4. – С.41–42.

5.Исследование условий восстановления цехов металлургического комбината, получивших повреждения: Отчет о НИР / Институт черной металлургии. – № регистрации 865. – Днепропетровск. – 2008.

6.Разработка справочных материалов по устойчивости оборудования металлургических предприятий: Отчеты о НИР / Институт черной металлургии. – № регистрации 947, 1115. – Днепропетровск. – 2004, 1988.

7.Разработка типовых сценариев аварий и идентификация опасностей на металлургическом комбинате: Отчет о НИР / Институт черной металлургии. – Днепропетровск. – 2004. – 71с.

8.Смирнов Н.В., Жерновский В.Д., Коган Л.М. Пожарная безопасность в проектах предприятий черной металлургии // М.: Металлургия. – 2005. – 166с.

9.Сысоев А.А., Мартынюк В.Ф., Мастрюков Б.С. Травматизм и аварийность в металлургии // Металлург. – 2004. – №2. – С.29–32.

идентификации опасностей;

оценки риска аварий на ОПО и (или) его составных частях;

установления степени опасности аварий на ОПО и (или) определения наиболее опасных (с учетом возможности возникновения и тяжести последствий аварий) составных частей ОПО;

разработки (корректировки) мер по снижению риска аварий.

Общая схема анализа опасностей и оценки риска аварий на ОПО представлена на схеме 2-1 приложения N 2 к настоящему Руководству. Рекомендуемая схема анализа опасностей и оценки риска аварий, связанных с выбросом опасных веществ на ОПО, представлена в приложении N 3 к настоящему Руководству.

14. При планировании и организации анализа риска аварий рекомендуется:

а) определить анализируемый ОПО (или его составную часть) и дать его общее описание, провести анализ требований нормативных и правовых документов в области анализа риска аварий применительно к рассматриваемому объекту;

б) обосновать необходимость проведения анализа опасностей и оценки риска аварий в случае отсутствия нормативных требований в этой области;

в) провести анализ требований заказчика работ (инвесторов, проектировщиков или других заинтересованных лиц);

г) уточнить задачи проводимого анализа риска аварий с учетом причин, которые вызвали необходимость проведения таких работ (декларирование промышленной безопасности, обоснование безопасности ОПО, экспертиза промышленной безопасности, обоснование проектных решений по обеспечению безопасности, применение новых технологий или материалов);

д) определить используемые методы анализа риска аварий, основные и дополнительные показатели риска, степень их детальности и ограничения;

е) проанализировать, выбрать и определить значения фоновых рисков аварий и (или) соответствующие критерии (достижения) допустимого риска аварий, и (или) иные обоснованные показатели безопасной эксплуатации ОПО;

ж) сформировать рабочую группу для проведения анализа риска аварий, оценить сроки и трудозатраты работ.

15. При осуществлении сбора сведений для описания анализируемого ОПО и (или) его составной части рекомендуется собрать сведения:

а) об идентификации ОПО;

б) об инцидентах и авариях на данном и (или) аналогичных объектах;

в) о характеристиках района расположения объекта (природных, техногенных, антропогенных);

г) о характеристиках технических устройств, зданий и сооружений, применяемых на объекте;

д) о проектном и фактическом распределении обращающихся опасных веществ.

16. На этапе идентификации опасностей аварий рекомендуется:

а) определить источники возникновения возможных инцидентов и аварий, связанных с разрушением сооружений и (или) технических устройств на ОПО, неконтролируемыми выбросами и (или) взрывами опасных веществ;

б) провести разделение ОПО на составные части (составляющие ОПО) при необходимости проведения анализа риска аварий на них; выделить характерные причины возникновения аварий на ОПО или его составных частях;

в) определить основные (типовые) сценарии аварий с их предварительной оценкой и ранжированием с учетом последствий и вероятности, при этом рассмотреть инициирующие и последующие события, приводящие к возможному возникновению поражающих факторов аварий.

На этапе идентификации опасностей могут быть даны предварительные рекомендации по уменьшению опасностей аварий с оценкой их достаточности либо выводы о проведении более детального анализа опасностей и оценки риска аварий.

17. На этапе оценки риска аварий в зависимости от поставленных задач могут применяться методы количественной оценки риска аварий, являющиеся приоритетными, методы качественной оценки риска аварий или их возможные сочетания (полуколичественная оценка риска аварий). Рекомендуется последовательно выполнить качественную и (или) количественную оценки:

а) возможности возникновения и развития инцидентов и аварий;

б) тяжести последствий и (или) ущербов от возможных инцидентов и аварий;

в) опасности аварий и связанных с ними угроз в значениях показателей риска.

18. Для оценки частоты инициирующих и последующих событий в анализируемых сценариях аварий рекомендуется использовать:

а) статистические данные по аварийности, надежности технических устройств и технологических систем, соответствующие отраслевой специфике ОПО или виду производственной деятельности (характерные частоты аварийной разгерметизации типового оборудования ОПО представлены в приложении N 4 к настоящему Руководству);

б) логико-графические методы "Анализ деревьев событий", "Анализ деревьев отказов", имитационные модели возникновения аварий на ОПО;

в) экспертные специальные знания в области аварийности и травматизма на ОПО в различных отраслях промышленности.

19. Оценка последствий и ущерба от возможных аварий включает описание и определение размеров возможных воздействий на людей, имущество и (или) окружающую среду. При этом оценивают физические эффекты аварийных событий (разрушение технических устройств, зданий, сооружений, пожары, взрывы, выбросы токсичных веществ), уточняют объекты, которые могут подвергнуться воздействиям поражающих факторов аварий, используют соответствующие модели аварийных процессов совместно с критериями поражения человека и групп людей, а также критерии разрушения технических устройств, зданий и сооружений (приложение N 5 к настоящему Руководству).

20. Результаты оценки риска аварий могут содержать качественные и (или) количественные характеристики основных опасностей возникновения, развития и последствий аварий, при этом рекомендуется проводить анализ неопределенности и достоверности полученных результатов, в том числе влияния исходных данных на рассчитываемые показатели риска.

21. В необходимых случаях в зависимости от поставленных задач анализ риска аварий может исчерпываться только получением отдельных показателей риска на ОПО и (или) его составных частях.

22. На этапе установления степени опасности аварий на ОПО, рекомендуется проводить сопоставительное сравнение значений полученных показателей опасностей и оценок риска аварий с:

а) допустимым риском аварий и (или) уровнем, обоснованным на этапе планирования и организации анализа риска аварий;

б) значениями риска аварий на других составных частях ОПО;

в) фоновым риском аварий для данного типа ОПО или аналогичных ОПО, с фоновым риском гибели людей в техногенных происшествиях;

г) значениями риска аварий, полученными с учетом фактических отступлений от требований промышленной безопасности, а также возможного и фактического внедрения компенсирующих мероприятий.

Необходимость и полнота сравнительных оценок определяются поставленными задачами анализа риска аварий. В качестве приоритетных рекомендуется использовать сравнительные сопоставления характерных для ОПО опасностей по показателям риска, которые необходимы для выявления наиболее аварийно-опасных составных частей на ОПО.

23. Для выявления наиболее опасных составных частей на ОПО проводится их ранжирование в порядке возрастания оцененных показателей опасности и рассчитанных значений риска аварий на них.

25. Установление степени опасности аварий на ОПО и определение наиболее опасных составных частей ОПО рекомендуется использовать для разработки обоснованных рекомендаций по снижению риска аварий на ОПО, которые могут иметь организационный и (или) технический характер.

26. В целях обоснования безопасности ОПО при отступлении от требований промышленной безопасности и для разработки мероприятий, компенсирующих эти отступления, результаты анализа риска аварий на ОПО рекомендуется использовать в следующем порядке:

а) обоснованно выбираются показатели риска, наиболее адекватно характеризующие безопасную эксплуатацию ОПО в области тех требований промышленной безопасности, для которых необходимы отступления и требуются соответствующие компенсирующие мероприятия;

б) оцениваются изменения значений выбранных показателей риска до и после возможных и фактических отступлений от требований промышленной безопасности, а также до и после возможного и фактического внедрения компенсирующих мероприятий;

в) оцененные изменения сравниваются с соответствующими критериями безопасной эксплуатации при отступлении от требований промышленной безопасности, которые предварительно обосновываются, например в виде соответствия рассчитанных показателей риска допустимым значениям.

Выбор редакции
Черехапа редко балует нас промокодами. В июле наконец-то вышел новый купон на 2019 год. Хотите немного сэкономить на страховке для...

Спор можно открыть не раньше чем через 10 дней, после того как продавец отправит товар и до того как Вы подтвердите получение товара, но...

Рано или поздно, каждый покупатель сайта Алиэкспресс сталкивается с ситуацией, когда заказанный товар не приходит. Это может случится из...

12 января 2010 года в 16 часов 53 минуты крупнейшее за последние 200 лет землетрясение магнитудой 7 баллов в считанные минуты погубило,...
Незнакомец, советуем тебе читать сказку "Каша из топора" самому и своим деткам, это замечательное произведение созданное нашими предками....
У пословиц и поговорок может быть большое количество значений. А раз так, то они располагают к исследованиям большим и малым. Наше -...
© Зощенко М. М., наследники, 2009© Андреев А. С., иллюстрации, 2011© ООО «Издательство АСТ», 2014* * *Смешные рассказыПоказательный...
Флавий Феодосий II Младший (тж. Малый, Юнейший; 10 апр. 401 г. - † 28 июля 450 г.) - император Восточной Римской империи (Византии) в...
В тревожный и непростой XII век Грузией правила царица Тамара . Царицей эту великую женщину называем мы, русскоговорящие жители планеты....