Oblicz pole płaskiej figury ograniczone podanymi liniami. Oblicz pole figury ograniczone liniami


W tym artykule dowiesz się, jak znaleźć obszar figury ograniczonej liniami za pomocą obliczeń całkowych. Po raz pierwszy ze sformułowaniem takiego problemu spotykamy się w szkole średniej, kiedy właśnie zakończyliśmy naukę całek oznaczonych i nadszedł czas, aby rozpocząć geometryczną interpretację zdobytej wiedzy w praktyce.

Zatem, co jest potrzebne, aby pomyślnie rozwiązać problem znalezienia obszaru figury za pomocą całek:

  • Umiejętność wykonywania kompetentnych rysunków;
  • Umiejętność rozwiązania całki oznaczonej przy użyciu znanego wzoru Newtona-Leibniza;
  • Możliwość „dostrzeżenia” bardziej opłacalnej opcji rozwiązania – tj. rozumiesz, jak wygodniej będzie przeprowadzić integrację w tym czy innym przypadku? Wzdłuż osi x (OX) czy osi y (OY)?
  • Cóż, gdzie bylibyśmy bez poprawnych obliczeń?) Obejmuje to zrozumienie, jak rozwiązywać całki innego rodzaju i prawidłowe obliczenia numeryczne.

Algorytm rozwiązywania problemu obliczania pola figury ograniczonego liniami:

1. Budujemy rysunek. Wskazane jest, aby zrobić to na kartce papieru w kratkę, na dużą skalę. Nazwę tej funkcji podpisujemy ołówkiem nad każdym wykresem. Podpisywanie wykresów odbywa się wyłącznie dla wygody dalszych obliczeń. Po otrzymaniu wykresu żądanej liczby w większości przypadków od razu będzie jasne, które granice całkowania zostaną zastosowane. W ten sposób rozwiązujemy problem graficznie. Zdarza się jednak, że wartości granic są ułamkowe lub niewymierne. Dlatego możesz wykonać dodatkowe obliczenia, przejdź do kroku drugiego.

2. Jeżeli granice całkowania nie są wyraźnie określone, to znajdujemy punkty przecięcia wykresów ze sobą i sprawdzamy, czy nasze rozwiązanie graficzne pokrywa się z rozwiązaniem analitycznym.

3. Następnie musisz przeanalizować rysunek. W zależności od układu wykresów funkcji istnieją różne podejścia do znajdowania obszaru figury. Przyjrzyjmy się różnym przykładom znajdowania obszaru figury za pomocą całek.

3.1.

Najbardziej klasyczna i najprostsza wersja problemu polega na tym, że trzeba znaleźć obszar zakrzywionego trapezu. Co to jest zakrzywiony trapez? Jest to figura płaska ograniczona osią x (y = 0), liniami prostymi x = a, x = b i dowolną krzywą ciągłą w przedziale od a do b. Co więcej, liczba ta nie jest ujemna i nie znajduje się poniżej osi x. W tym przypadku pole trapezu krzywoliniowego jest liczbowo równe pewnej całce obliczonej za pomocą wzoru Newtona-Leibniza: Przykład 1

y = x2 – 3x + 3, x = 1, x = 3, y = 0.

Jakimi liniami ograniczona jest figura? Mamy parabolę y = x2 - 3x + 3, która znajduje się powyżej osi OX, jest nieujemna, ponieważ wszystkie punkty tej paraboli mają wartości dodatnie. Następnie podane są linie proste x = 1 i x = 3, które biegną równolegle do osi wzmacniacza operacyjnego i stanowią linie graniczne figury po lewej i prawej stronie. Cóż, y = 0, co jest również osią x, która ogranicza figurę od dołu. Wynikowa figura jest zacieniowana, jak widać na rysunku po lewej stronie. W takim przypadku możesz natychmiast przystąpić do rozwiązywania problemu. Przed nami prosty przykład zakrzywionego trapezu, który dalej rozwiązujemy za pomocą wzoru Newtona-Leibniza.

3.2. W poprzednim akapicie 3.1 zbadaliśmy przypadek, gdy zakrzywiony trapez znajduje się powyżej osi x. Rozważmy teraz przypadek, gdy warunki zadania są takie same, z tą różnicą, że funkcja leży pod osią x. Do standardowego wzoru Newtona-Leibniza dodaje się minus. Poniżej zastanowimy się, jak rozwiązać taki problem.

Przykład 2

. Oblicz obszar figury ograniczony liniami y = x2 + 6x + 2, x = -4, x = -1, y = 0.

W tym przykładzie mamy parabolę y = x2 + 6x + 2, która wychodzi spod osi OX, prostych x = -4, x = -1, y = 0. Tutaj y = 0 ogranicza pożądaną liczbę z góry. Proste x = -4 i x = -1 to granice, w obrębie których zostanie obliczona całka oznaczona. Zasada rozwiązania problemu znalezienia pola figury prawie całkowicie pokrywa się z przykładem nr 1. Jedyną różnicą jest to, że dana funkcja nie jest dodatnia, a także jest ciągła na przedziale [-4; -1]. Co masz na myśli mówiąc, że nie jest pozytywny? Jak widać na rysunku, liczba znajdująca się w obrębie podanych x ma wyłącznie współrzędne „ujemne”, o czym musimy pamiętać i co musimy zobaczyć podczas rozwiązywania problemu. Pole figury szukamy za pomocą wzoru Newtona-Leibniza, tylko ze znakiem minus na początku.

Przejdźmy do rozważenia zastosowań rachunku całkowego. Na tej lekcji przeanalizujemy typowy i najczęstszy problem - jak obliczyć pole figury płaskiej za pomocą całki oznaczonej. Wreszcie ci, którzy szukają sensu w wyższej matematyce – oby go znaleźli. Nigdy nie wiadomo. W prawdziwym życiu będziesz musiał przybliżyć działkę daczy za pomocą funkcji elementarnych i znaleźć jej pole za pomocą całki oznaczonej.

Aby pomyślnie opanować materiał, musisz:

1) Zrozumieć całkę nieoznaczoną przynajmniej na poziomie średniozaawansowanym. Dlatego manekiny powinny najpierw zapoznać się z lekcją Nie.

2) Potrafić zastosować wzór Newtona-Leibniza i obliczyć całkę oznaczoną. Możesz nawiązać ciepłe, przyjazne relacje z całkami oznaczonymi na stronie Całka oznaczona. Przykłady rozwiązań.

Tak naprawdę, aby znaleźć pole figury, nie potrzeba aż tak dużej wiedzy o całce nieoznaczonej i oznaczonej. Zadanie „obliczyć pole za pomocą całki oznaczonej” zawsze wiąże się z konstruowaniem rysunku, więc Twoja wiedza i umiejętności w zakresie konstruowania rysunków będą znacznie bardziej palącą kwestią. W związku z tym przydatne jest odświeżenie pamięci o wykresach podstawowych funkcji elementarnych i przynajmniej umiejętność skonstruowania linii prostej, paraboli i hiperboli. Można to zrobić (dla wielu jest to konieczne) za pomocą materiału metodologicznego i artykułu na temat przekształceń geometrycznych grafów.

Właściwie problem wyznaczania pola za pomocą całki oznaczonej znają już wszyscy od czasów szkolnych i nie wyjdziemy daleko poza szkolny program nauczania. Ten artykuł mógłby w ogóle nie istnieć, ale faktem jest, że problem pojawia się w 99 przypadkach na 100, gdy uczeń cierpi na znienawidzoną szkołę i z entuzjazmem opanowuje kurs wyższej matematyki.

Materiały z tych warsztatów są prezentowane w sposób prosty, szczegółowy i zawierający minimum teorii.

Zacznijmy od zakrzywionego trapezu.

Zakrzywiony trapez to płaska figura ograniczona osią, liniami prostymi i wykresem funkcji ciągłej na odcinku, który nie zmienia znaku w tym przedziale. Niech ta liczba zostanie zlokalizowana nie niższy oś x:

Następnie obszar trapezu krzywoliniowego jest liczbowo równy całce oznaczonej. Każda całka oznaczona (która istnieje) ma bardzo dobre znaczenie geometryczne. Na lekcji Całka oznaczona. Przykłady rozwiązań Powiedziałem, że całka oznaczona jest liczbą. A teraz czas podać kolejny przydatny fakt. Z punktu widzenia geometrii całką oznaczoną jest POLE.

Oznacza to, że pewna całka (jeśli istnieje) geometrycznie odpowiada obszarowi określonej figury. Rozważmy na przykład całkę oznaczoną. Całka definiuje krzywą na płaszczyźnie znajdującej się nad osią (chętni mogą narysować), a sama całka oznaczona jest liczbowo równa powierzchni odpowiedniego trapezu krzywoliniowego.

Przykład 1

Jest to typowa instrukcja przypisania. Pierwszym i najważniejszym punktem decyzji jest losowanie. Ponadto rysunek musi być wykonany PRAWIDŁOWO.

Konstruując rysunek, zalecam następującą kolejność: najpierw lepiej jest skonstruować wszystkie linie proste (jeśli takie istnieją), a dopiero potem parabole, hiperbole i wykresy innych funkcji. Bardziej opłaca się konstruować wykresy funkcji punktowo; technikę konstrukcji punktowej można znaleźć w materiałach referencyjnych Wykresy i własności funkcji elementarnych. Znajdziesz tam również bardzo przydatny materiał do naszej lekcji - jak szybko zbudować parabolę.

W przypadku tego problemu rozwiązanie może wyglądać następująco.
Uzupełnijmy rysunek (zwróćmy uwagę, że równanie definiuje oś):


Nie będę cieniował zakrzywionego trapezu; tutaj jest oczywiste, o jakim obszarze mówimy. Rozwiązanie jest kontynuowane w następujący sposób:

Na odcinku wykres funkcji znajduje się nad osią, zatem:

Odpowiedź:

Kto ma trudności z obliczeniem całki oznaczonej i zastosowaniem wzoru Newtona-Leibniza , zobacz wykład Całka oznaczona. Przykłady rozwiązań.

Po wykonaniu zadania zawsze warto spojrzeć na rysunek i dowiedzieć się, czy odpowiedź jest prawdziwa. W tym przypadku liczbę komórek na rysunku liczymy „na oko” - cóż, będzie ich około 9, co wydaje się prawdą. Jest całkowicie jasne, że jeśli otrzymamy odpowiedź powiedzmy: 20 jednostek kwadratowych, to oczywiste jest, że gdzieś popełniono błąd - 20 komórek oczywiście nie mieści się w omawianej liczbie, najwyżej kilkanaście. Jeśli odpowiedź jest negatywna, to zadanie również zostało rozwiązane niepoprawnie.

Przykład 2

Oblicz pole figury ograniczone liniami , i osią

To jest przykład, który możesz rozwiązać samodzielnie. Pełne rozwiązanie i odpowiedź na końcu lekcji.

Co zrobić, jeśli pod osią znajduje się zakrzywiony trapez?

Przykład 3

Oblicz obszar figury ograniczony liniami i osiami współrzędnych.

Rozwiązanie: Zróbmy rysunek:

Jeśli zakrzywiony trapez znajduje się pod osią (lub przynajmniej nie wyżej danej osi), to jej pole można obliczyć korzystając ze wzoru:
W tym przypadku:

Uwaga! Nie należy mylić tych dwóch rodzajów zadań:

1) Jeśli zostaniesz poproszony o rozwiązanie całki oznaczonej bez żadnego znaczenia geometrycznego, wówczas może ona być ujemna.

2) Jeśli zostaniesz poproszony o znalezienie obszaru figury za pomocą całki oznaczonej, wówczas obszar jest zawsze dodatni! Dlatego we wzorze, który właśnie omówiliśmy, pojawia się minus.

W praktyce najczęściej figura znajduje się zarówno w górnej, jak i dolnej półpłaszczyźnie, dlatego od najprostszych problemów szkolnych przechodzimy do bardziej znaczących przykładów.

Przykład 4

Znajdź obszar figury płaskiej ograniczony liniami , .

Rozwiązanie: Najpierw musisz zrobić rysunek. Ogólnie rzecz biorąc, konstruując rysunek w zagadnieniach obszarowych, najbardziej interesują nas punkty przecięcia prostych. Znajdźmy punkty przecięcia paraboli i linii prostej. Można to zrobić na dwa sposoby. Pierwsza metoda ma charakter analityczny. Rozwiązujemy równanie:

Oznacza to, że dolna granica całkowania to , górna granica całkowania to .
Jeśli to możliwe, lepiej nie stosować tej metody.

O wiele bardziej opłaca się i szybciej jest konstruować linie punkt po punkcie, a granice integracji stają się jasne „same z siebie”. Technikę punktowej konstrukcji różnych grafów szczegółowo omówiono w pomocy Wykresy i właściwości funkcji elementarnych. Niemniej jednak czasami trzeba zastosować analityczną metodę wyznaczania granic, jeśli np. wykres jest wystarczająco duży lub szczegółowa konstrukcja nie ujawniła granic całkowania (mogą one być ułamkowe lub niewymierne). Rozważymy również taki przykład.

Wróćmy do naszego zadania: bardziej racjonalnie jest najpierw skonstruować linię prostą, a dopiero potem parabolę. Zróbmy rysunek:

Powtarzam, że konstruując punktowo, granice całkowania najczęściej odkrywane są „automatycznie”.

A teraz działający wzór: Jeśli na odcinku jakaś funkcja ciągła jest większa lub równa jakiejś funkcji ciągłej, to obszar figury ograniczony wykresami tych funkcji i liniami prostymi można znaleźć za pomocą wzoru:

Tutaj nie trzeba już zastanawiać się, gdzie znajduje się figura - nad osią czy pod osią i mniej więcej ważne jest, który wykres jest WYŻSZY (w stosunku do innego wykresu), a który PONIŻEJ.

W rozważanym przykładzie oczywiste jest, że na odcinku parabola znajduje się powyżej linii prostej, dlatego należy odjąć od niej

Gotowe rozwiązanie może wyglądać następująco:

Pożądana figura jest ograniczona parabolą powyżej i linią prostą poniżej.
Na segmencie, zgodnie z odpowiednim wzorem:

Odpowiedź:

W rzeczywistości szkolny wzór na obszar krzywoliniowego trapezu w dolnej półpłaszczyźnie (patrz prosty przykład nr 3) jest szczególnym przypadkiem wzoru . Ponieważ oś jest określona przez równanie i znajduje się wykres funkcji nie wyżej w takim razie osie

A teraz kilka przykładów własnego rozwiązania

Przykład 5

Przykład 6

Znajdź obszar figury ograniczony liniami , .

Podczas rozwiązywania problemów związanych z obliczaniem pola za pomocą całki oznaczonej czasami zdarza się zabawny incydent. Rysunek został wykonany poprawnie, obliczenia były prawidłowe, ale przez nieostrożność... znaleziono obszar niewłaściwej figury, dokładnie tak kilka razy pomylił się Twój pokorny sługa. Oto przypadek z życia wzięty:

Przykład 7

Oblicz pole figury ograniczone liniami , , , .

Rozwiązanie: Najpierw zróbmy rysunek:

...Ech, rysunek wyszedł tandetnie, ale wszystko wydaje się być czytelne.

Figura, której pole musimy znaleźć, jest zacieniowana na niebiesko (przyjrzyj się uważnie stanowi - jak bardzo figura jest ograniczona!). Ale w praktyce z powodu nieuwagi często pojawia się „błąd”, polegający na tym, że trzeba znaleźć obszar figury zacieniony na zielono!

Ten przykład jest również przydatny, ponieważ oblicza pole figury za pomocą dwóch całek oznaczonych. Naprawdę:

1) Na odcinku powyżej osi znajduje się wykres linii prostej;

2) Na odcinku powyżej osi znajduje się wykres hiperboli.

Jest rzeczą oczywistą, że obszary można (i należy) dodać, zatem:

Odpowiedź:

Przejdźmy do innego znaczącego zadania.

Przykład 8

Oblicz pole figury ograniczone liniami,
Przedstawmy równania w formie „szkolnej” i wykonajmy rysunek punkt po punkcie:

Z rysunku jasno wynika, że ​​nasza górna granica jest „dobra”: .
Ale jaka jest dolna granica?! Oczywiste jest, że nie jest to liczba całkowita, ale co to jest? Może ? Ale gdzie jest gwarancja, że ​​rysunek zostanie wykonany z idealną dokładnością, może się okazać, że... Lub korzeń. A co jeśli nieprawidłowo zbudowaliśmy wykres?

W takich przypadkach trzeba poświęcić dodatkowy czas i analitycznie wyjaśnić granice integracji.

Znajdźmy punkty przecięcia linii prostej i paraboli.
W tym celu rozwiązujemy równanie:


,

Naprawdę, .

Dalsze rozwiązanie jest trywialne, najważniejsze jest, aby nie pomylić się z podstawieniami i znakami; obliczenia tutaj nie są najprostsze.

Na segmencie zgodnie z odpowiednim wzorem:

Odpowiedź:

Cóż, na koniec lekcji, spójrzmy na dwa trudniejsze zadania.

Przykład 9

Oblicz pole figury ograniczone liniami , ,

Rozwiązanie: Przedstawmy tę figurę na rysunku.

Cholera, zapomniałem podpisać harmonogram i przepraszam, nie chciałem przerabiać zdjęcia. Krótko mówiąc, to nie jest dzień rysowania, dzisiaj jest ten dzień =)

Do konstrukcji punktowej trzeba znać wygląd sinusoidy (i ogólnie warto znać wykresy wszystkich funkcji elementarnych), a także niektóre wartości sinusoidy, można je znaleźć w tablica trygonometryczna. W niektórych przypadkach (jak w tym przypadku) możliwe jest skonstruowanie schematycznego rysunku, na którym powinny być zasadniczo poprawnie wyświetlone wykresy i granice całkowania.

Nie ma tu problemów z granicami całkowania, które wynikają bezpośrednio z warunku: „x” zmienia się od zera na „pi”. Podejmijmy dalszą decyzję:

Na odcinku wykres funkcji znajduje się nad osią, zatem:

Zaczynamy rozważać faktyczny proces obliczania całki podwójnej i zapoznawać się z jej znaczeniem geometrycznym.

Całka podwójna jest liczbowo równa powierzchni figury płaskiej (obszarowi integracji). Jest to najprostsza postać całki podwójnej, gdy funkcja dwóch zmiennych jest równa jeden: .

Najpierw spójrzmy na problem w ogólnej formie. Teraz będziesz zaskoczony, jak wszystko jest naprawdę proste! Obliczmy obszar płaskiej figury ograniczony liniami. Dla pewności zakładamy, że na odcinku . Pole tej figury jest liczbowo równe:

Przedstawmy obszar na rysunku:

Wybierzmy pierwszy sposób przemierzania terenu:

Zatem:

I od razu ważna sztuczka techniczna: powtarzające się całki można obliczyć osobno. Najpierw całka wewnętrzna, potem całka zewnętrzna. Gorąco polecam tę metodę początkującym w temacie.

1) Obliczamy całkę wewnętrzną i całkowanie przeprowadzamy po zmiennej „y”:

Całka nieoznaczona jest tutaj najprostsza, a następnie stosuje się banalny wzór Newtona-Leibniza, z tą tylko różnicą, że granicami całkowania nie są liczby, ale funkcje. Najpierw podstawiliśmy górną granicę do „y” (funkcja pierwotna), a następnie dolną granicę

2) Wynik uzyskany w akapicie pierwszym należy podstawić do całki zewnętrznej:

Bardziej zwarta reprezentacja całego rozwiązania wygląda następująco:

Wynikowa formuła jest dokładnie działającym wzorem do obliczania pola figury płaskiej za pomocą „zwykłej” całki oznaczonej! Zobacz lekcję Obliczanie pola za pomocą całki oznaczonej, tam jest na każdym kroku!

Oznacza to problem obliczania powierzchni za pomocą całki podwójnej niewiele się różni z problemu wyznaczania pola za pomocą całki oznaczonej!

Właściwie to to samo!

Przykład 9

W związku z tym nie powinny pojawić się żadne trudności! Nie będę patrzeć na bardzo wiele przykładów, ponieważ w rzeczywistości wielokrotnie spotykałeś się z tym zadaniem.

Wybierzmy następującą kolejność przechodzenia przez obszar:

Tutaj i dalej nie będę się rozwodzić nad tym, jak przemierzać ten obszar, ponieważ bardzo szczegółowe wyjaśnienia podano w pierwszym akapicie.

Zatem:

Jak już wspomniałem, dla początkujących lepiej jest obliczać całki iterowane osobno i ja będę trzymał się tej samej metody:

1) Najpierw, korzystając ze wzoru Newtona-Leibniza, zajmujemy się całką wewnętrzną:

2) Wynik uzyskany w pierwszym kroku podstawiamy do całki zewnętrznej:

Punkt 2 to tak naprawdę znalezienie pola figury płaskiej za pomocą całki oznaczonej.

Odpowiedź:

To takie głupie i naiwne zadanie.

Ciekawy przykład samodzielnego rozwiązania:

Przykład 10

Korzystając z całki podwójnej, oblicz pole figury płaskiej ograniczone liniami , ,

Przybliżony przykład ostatecznego rozwiązania na koniec lekcji.

W przykładach 9-10 znacznie bardziej opłaca się zastosować pierwszą metodę przemierzania terenu, ciekawscy czytelnicy, nawiasem mówiąc, mogą zmienić kolejność przemierzania i obliczyć pola drugą metodą. Jeśli się nie pomylisz, otrzymasz oczywiście te same wartości powierzchni.

Ale w niektórych przypadkach druga metoda przemierzania terenu jest skuteczniejsza i na koniec kursu młodego kujona przyjrzyjmy się jeszcze kilku przykładom na ten temat:

Przykład 11

Korzystając z całki podwójnej, oblicz pole figury płaskiej ograniczone liniami,

Rozwiązanie: czekamy na dwie parabole z dziwactwem, które leżą po bokach. Nie ma co się uśmiechać; podobne rzeczy zdarzają się dość często w całkach wielokrotnych.

Jak najłatwiej zrobić rysunek?

Wyobraźmy sobie parabolę w postaci dwóch funkcji:
– gałąź górna i – gałąź dolna.

Podobnie wyobraźmy sobie parabolę w postaci górnej i dolnej gałęzie.

Następnie punktowe kreślenie reguł wykresów, w wyniku czego otrzymujemy tę dziwną figurę:

Pole figury obliczamy za pomocą całki podwójnej według wzoru:

Co się stanie jeśli wybierzemy pierwszą metodę przemierzania terenu? Po pierwsze, obszar ten będzie musiał zostać podzielony na dwie części. Po drugie, będziemy obserwować ten smutny obraz: . Całki oczywiście nie są bardzo skomplikowane, ale… jest stare matematyczne powiedzenie: ci, którzy są blisko swoich korzeni, nie potrzebują testu.

Dlatego na podstawie nieporozumienia podanego w warunku wyrażamy funkcje odwrotne:

Funkcje odwrotne w tym przykładzie mają tę zaletę, że określają od razu całą parabolę, bez żadnych liści, żołędzi, gałęzi i korzeni.

Według drugiej metody przemieszczanie się po obszarze będzie wyglądać następująco:

Zatem:

Jak to mówią, poczuj różnicę.

1) Zajmujemy się całką wewnętrzną:

Wynik podstawiamy do całki zewnętrznej:

Całkowanie po zmiennej „y” nie powinno być mylące; gdyby istniała litera „zy”, świetnie byłoby ją zintegrować. Chociaż każdy, kto przeczytał drugi akapit lekcji Jak obliczyć objętość ciała wirującego, nie doświadcza już najmniejszej niezręczności przy całkowaniu metodą „Y”.

Zwróć także uwagę na pierwszy krok: całka jest parzysta, a przedział całkowania jest symetryczny względem zera. Dlatego segment można podzielić na połowę, a wynik można podwoić. Technika ta została szczegółowo opisana w lekcji Efektywne metody obliczania całki oznaczonej.

Co dodać... Wszystko!

Odpowiedź:

Aby przetestować technikę integracji, możesz spróbować wykonać obliczenia . Odpowiedź powinna być dokładnie taka sama.

Przykład 12

Korzystając z całki podwójnej, oblicz pole figury płaskiej ograniczone liniami

To jest przykład, który możesz rozwiązać samodzielnie. Co ciekawe, jeśli spróbujesz skorzystać z pierwszej metody przemierzania obszaru, figura nie będzie już musiała być podzielona na dwie, ale na trzy części! I odpowiednio otrzymujemy trzy pary powtarzających się całek. To również się zdarza.

Zajęcia mistrzowskie dobiegły końca i czas przejść do poziomu arcymistrzowskiego – Jak obliczyć całkę podwójną? Przykłady rozwiązań. Postaram się nie być takim maniakiem w drugim artykule =)

Życzę sukcesu!

Rozwiązania i odpowiedzi:

Przykład 2:Rozwiązanie: Przedstawmy obszar na rysunku:

Wybierzmy następującą kolejność przechodzenia przez obszar:

Zatem:
Przejdźmy do funkcji odwrotnych:


Zatem:
Odpowiedź:

Przykład 4:Rozwiązanie: Przejdźmy do funkcji bezpośrednich:


Zróbmy rysunek:

Zmieńmy kolejność przemierzania terenu:

Odpowiedź:

Przejdźmy do rozważenia zastosowań rachunku całkowego. W tej lekcji przyjrzymy się typowemu i najczęstszemu problemowi obliczania pola figury płaskiej za pomocą całki oznaczonej. Wreszcie, niech znajdą go wszyscy, którzy szukają sensu w wyższej matematyce. Nigdy nie wiadomo. W prawdziwym życiu będziesz musiał przybliżyć działkę daczy za pomocą funkcji elementarnych i znaleźć jej pole za pomocą całki oznaczonej.

Aby pomyślnie opanować materiał, musisz:

1) Zrozumieć całkę nieoznaczoną przynajmniej na poziomie średniozaawansowanym. Zatem manekiny powinny najpierw zapoznać się z lekcją He.

2) Potrafić zastosować wzór Newtona-Leibniza i obliczyć całkę oznaczoną. Możesz nawiązać ciepłe, przyjazne relacje z całkami oznaczonymi na stronie Całka oznaczona. Przykłady rozwiązań. Zadanie „oblicz pole za pomocą całki oznaczonej” zawsze wiąże się z konstruowaniem rysunku, dlatego ważna będzie także Twoja wiedza i umiejętności w zakresie konstruowania rysunków. Musisz przynajmniej umieć skonstruować linię prostą, parabolę i hiperbolę.

Zacznijmy od zakrzywionego trapezu. Zakrzywiony trapez to płaska figura ograniczona wykresem jakiejś funkcji y = F(X), oś WÓŁ i linie X = A; X = B.

Pole trapezu krzywoliniowego jest liczbowo równe całce oznaczonej

Każda całka oznaczona (która istnieje) ma bardzo dobre znaczenie geometryczne. Na lekcji Całka oznaczona. Przykłady rozwiązań powiedzieliśmy, że całka oznaczona jest liczbą. A teraz czas podać kolejny przydatny fakt. Z punktu widzenia geometrii całką oznaczoną jest POLE. Oznacza to, że pewna całka (jeśli istnieje) geometrycznie odpowiada obszarowi określonej figury. Rozważmy całkę oznaczoną

Integrand

definiuje krzywą na płaszczyźnie (można ją narysować w razie potrzeby), a sama całka oznaczona jest liczbowo równa powierzchni odpowiedniego trapezu krzywoliniowego.



Przykład 1

, , , .

Jest to typowa instrukcja przypisania. Najważniejszym punktem decyzji jest konstrukcja rysunku. Ponadto rysunek musi być wykonany PRAWIDŁOWO.

Konstruując rysunek, zalecam następującą kolejność: najpierw lepiej jest skonstruować wszystkie linie proste (jeśli takie istnieją), a dopiero potem parabole, hiperbole i wykresy innych funkcji. Technikę konstrukcji punktowej można znaleźć w materiale referencyjnym Wykresy i właściwości funkcji elementarnych. Znajdziesz tam również bardzo przydatny materiał do naszej lekcji - jak szybko zbudować parabolę.

W przypadku tego problemu rozwiązanie może wyglądać następująco.

Zróbmy rysunek (zwróć uwagę, że równanie y= 0 określa oś WÓŁ):

Nie będziemy cieniować zakrzywionego trapezu, tutaj jest oczywiste, o jakim obszarze mówimy. Rozwiązanie jest kontynuowane w następujący sposób:

Na odcinku [-2; 1] wykres funkcji y = X 2 + 2 umieszczone nad osią WÓŁ, Dlatego:

Odpowiedź: .

Kto ma trudności z obliczeniem całki oznaczonej i zastosowaniem wzoru Newtona-Leibniza

,

Zapoznaj się z wykładem Całka oznaczona. Przykłady rozwiązań. Po wykonaniu zadania zawsze warto spojrzeć na rysunek i dowiedzieć się, czy odpowiedź jest prawdziwa. W tym przypadku liczbę komórek na rysunku liczymy „na oko” - cóż, będzie ich około 9, co wydaje się prawdą. Jest całkowicie jasne, że jeśli otrzymamy odpowiedź powiedzmy: 20 jednostek kwadratowych, to oczywiste jest, że gdzieś popełniono błąd - 20 komórek oczywiście nie mieści się w omawianej liczbie, najwyżej kilkanaście. Jeśli odpowiedź jest negatywna, to zadanie również zostało rozwiązane niepoprawnie.

Przykład 2

Oblicz pole figury ograniczone liniami xy = 4, X = 2, X= 4 i oś WÓŁ.

To jest przykład, który możesz rozwiązać samodzielnie. Pełne rozwiązanie i odpowiedź na końcu lekcji.

Co zrobić, jeśli pod osią znajduje się zakrzywiony trapez WÓŁ?

Przykład 3

Oblicz pole figury ograniczone liniami y = były, X= 1 i osie współrzędnych.

Rozwiązanie: Zróbmy rysunek:

Jeśli zakrzywiony trapez znajduje się całkowicie pod osią WÓŁ, to jego pole można obliczyć korzystając ze wzoru:

W tym przypadku:

.

Uwaga! Nie należy mylić tych dwóch rodzajów zadań:

1) Jeśli zostaniesz poproszony o rozwiązanie całki oznaczonej bez żadnego znaczenia geometrycznego, wówczas może ona być ujemna.

2) Jeśli zostaniesz poproszony o znalezienie obszaru figury za pomocą całki oznaczonej, wówczas obszar jest zawsze dodatni! Dlatego we wzorze, który właśnie omówiliśmy, pojawia się minus.

W praktyce najczęściej figura znajduje się zarówno w górnej, jak i dolnej półpłaszczyźnie, dlatego od najprostszych problemów szkolnych przechodzimy do bardziej znaczących przykładów.

Przykład 4

Znajdź obszar figury płaskiej ograniczony liniami y = 2XX 2 , y = -X.

Rozwiązanie: Najpierw musisz zrobić rysunek. Konstruując rysunek w problemach obszarowych, najbardziej interesują nas punkty przecięcia linii. Znajdźmy punkty przecięcia paraboli y = 2XX 2 i prosto y = -X. Można to zrobić na dwa sposoby. Pierwsza metoda ma charakter analityczny. Rozwiązujemy równanie:

Oznacza to, że dolna granica całkowania A= 0, górna granica całkowania B= 3. Często bardziej opłaca się i szybciej jest konstruować linie punkt po punkcie, a granice całkowania stają się jasne „same z siebie”. Niemniej jednak czasami trzeba zastosować analityczną metodę wyznaczania granic, jeśli np. wykres jest wystarczająco duży lub szczegółowa konstrukcja nie ujawniła granic całkowania (mogą one być ułamkowe lub niewymierne). Wróćmy do naszego zadania: bardziej racjonalnie jest najpierw skonstruować linię prostą, a dopiero potem parabolę. Zróbmy rysunek:

Powtórzmy, że przy konstruowaniu punktowym granice całkowania wyznaczane są najczęściej „automatycznie”.

A teraz działający wzór:

Jeśli w segmencie [ A; B] jakaś funkcja ciągła F(X) jest większa lub równa jakiejś funkcji ciągłej G(X), wówczas obszar odpowiedniej figury można znaleźć za pomocą wzoru:

Tutaj nie trzeba już zastanawiać się, gdzie znajduje się figura - nad osią czy pod osią, ale ważne jest, który wykres jest WYŻSZY (w stosunku do innego wykresu), a który PONIŻEJ.

W rozważanym przykładzie oczywiste jest, że na odcinku parabola znajduje się powyżej linii prostej, a zatem od 2 XX 2 należy odjąć – X.

Gotowe rozwiązanie może wyglądać następująco:

Pożądana liczba jest ograniczona parabolą y = 2XX 2 na górze i prosto y = -X poniżej.

W segmencie 2 XX 2 ≥ -X. Zgodnie z odpowiednim wzorem:

Odpowiedź: .

W rzeczywistości szkolny wzór na obszar krzywoliniowego trapezu w dolnej półpłaszczyźnie (patrz przykład nr 3) jest szczególnym przypadkiem wzoru

.

Ponieważ oś WÓŁ dane równaniem y= 0 i wykres funkcji G(X) umieszczonego poniżej osi WÓŁ, To

.

A teraz kilka przykładów własnego rozwiązania

Przykład 5

Przykład 6

Znajdź obszar figury ograniczony liniami

Podczas rozwiązywania problemów związanych z obliczaniem pola za pomocą całki oznaczonej czasami zdarza się zabawny incydent. Rysunek został wykonany poprawnie, obliczenia były prawidłowe, jednak przez nieuwagę... znaleziono obszar niewłaściwej figury.

Przykład 7

Najpierw zróbmy rysunek:

Figura, której pole musimy znaleźć, jest zacieniowana na niebiesko (przyjrzyj się uważnie stanowi - jak bardzo figura jest ograniczona!). Ale w praktyce z powodu nieuwagi ludzie często decydują, że muszą znaleźć obszar figury zacieniony na zielono!

Ten przykład jest również przydatny, ponieważ oblicza pole figury za pomocą dwóch całek oznaczonych. Naprawdę:

1) Na odcinku [-1; 1] powyżej osi WÓŁ wykres leży prosto y = X+1;

2) Na odcinku powyżej osi WÓŁ znajduje się wykres hiperboli y = (2/X).

Jest rzeczą oczywistą, że obszary można (i należy) dodać, zatem:

Odpowiedź:

Przykład 8

Oblicz pole figury ograniczone liniami

Przedstawmy równania w formie „szkolnej”.

i wykonaj rysunek punkt po punkcie:

Z rysunku jasno wynika, że ​​nasza górna granica jest „dobra”: B = 1.

Ale jaka jest dolna granica?! Oczywiste jest, że nie jest to liczba całkowita, ale co to jest?

Może, A=(-1/3)? Ale gdzie jest gwarancja, że ​​rysunek zostanie wykonany z idealną dokładnością, może się to okazać A=(-1/4). A co jeśli nieprawidłowo zbudowaliśmy wykres?

W takich przypadkach trzeba poświęcić dodatkowy czas i analitycznie wyjaśnić granice integracji.

Znajdźmy punkty przecięcia wykresów

W tym celu rozwiązujemy równanie:

.

Stąd, A=(-1/3).

Dalsze rozwiązanie jest banalne. Najważniejsze, aby nie pomylić się z podstawieniami i znakami. Obliczenia tutaj nie należą do najprostszych. Na segmencie

, ,

według odpowiedniego wzoru:

Odpowiedź:

Na zakończenie lekcji spójrzmy na dwa trudniejsze zadania.

Przykład 9

Oblicz pole figury ograniczone liniami

Rozwiązanie: Przedstawmy tę figurę na rysunku.

Aby skonstruować rysunek punkt po punkcie, musisz znać wygląd sinusoidy. Ogólnie rzecz biorąc, przydatna jest znajomość wykresów wszystkich funkcji elementarnych, a także niektórych wartości sinusoidalnych. Można je znaleźć w tabeli wartości funkcji trygonometrycznych. W niektórych przypadkach (na przykład w tym przypadku) możliwe jest zbudowanie schematycznego rysunku, na którym powinny być zasadniczo poprawnie wyświetlane wykresy i granice całkowania.

Nie ma tu problemów z granicami całkowania, które wynikają bezpośrednio z warunku:

– „x” zmienia się z zera na „pi”. Podejmijmy dalszą decyzję:

Na segmencie wykres funkcji y= grzech 3 X umieszczony nad osią WÓŁ, Dlatego:

(1) Całkę sinusów i cosinusów do potęg nieparzystych możesz zobaczyć na lekcji Całki funkcji trygonometrycznych. Uszczypujemy jedną zatokę.

(2) W formie używamy głównej tożsamości trygonometrycznej

(3) Zmieńmy zmienną T=co X, to: znajduje się powyżej osi, zatem:

.

.

Uwaga: zwróć uwagę, jak obliczana jest całka stycznej do sześcianu;

.

Jak wstawić wzory matematyczne na stronę internetową?

Jeśli kiedykolwiek będziesz musiał dodać jedną lub dwie formuły matematyczne do strony internetowej, najłatwiej to zrobić w sposób opisany w artykule: formuły matematyczne można łatwo wstawić na stronę w postaci obrazów, które są automatycznie generowane przez Wolfram Alpha . Oprócz prostoty, ta uniwersalna metoda pomoże poprawić widoczność witryny w wyszukiwarkach. Działa od dawna (i myślę, że będzie działać wiecznie), ale jest już moralnie przestarzały.

Jeśli regularnie korzystasz z formuł matematycznych na swojej stronie, to polecam skorzystać z MathJax – specjalnej biblioteki JavaScript, która wyświetla notację matematyczną w przeglądarkach internetowych przy użyciu znaczników MathML, LaTeX lub ASCIIMathML.

Istnieją dwa sposoby rozpoczęcia korzystania z MathJax: (1) za pomocą prostego kodu możesz szybko podłączyć do swojej witryny skrypt MathJax, który zostanie automatycznie załadowany ze zdalnego serwera w odpowiednim czasie (lista serwerów); (2) pobierz skrypt MathJax ze zdalnego serwera na swój serwer i podłącz go do wszystkich stron swojej witryny. Druga metoda - bardziej złożona i czasochłonna - przyspieszy ładowanie stron Twojej witryny, a jeśli z jakiegoś powodu nadrzędny serwer MathJax stanie się chwilowo niedostępny, nie będzie to miało żadnego wpływu na Twoją witrynę. Pomimo tych zalet wybrałem pierwszą metodę, ponieważ jest prostsza, szybsza i nie wymaga umiejętności technicznych. Podążaj za moim przykładem, a już za 5 minut będziesz mógł korzystać ze wszystkich funkcji MathJax na swojej stronie.

Możesz połączyć skrypt biblioteki MathJax ze zdalnym serwerem, korzystając z dwóch opcji kodu pobranych z głównej witryny MathJax lub ze strony dokumentacji:

Jedną z tych opcji kodu należy skopiować i wkleić do kodu swojej strony internetowej, najlepiej pomiędzy tagami i/lub bezpośrednio po tagu. Według pierwszej opcji MathJax ładuje się szybciej i mniej spowalnia stronę. Ale druga opcja automatycznie monitoruje i ładuje najnowsze wersje MathJax. Jeśli wstawisz pierwszy kod, będzie on wymagał okresowej aktualizacji. Jeśli wstawisz drugi kod, strony będą ładować się wolniej, ale nie będziesz musiał stale monitorować aktualizacji MathJax.

Najłatwiej połączyć się z MathJax w Bloggerze lub WordPressie: w panelu sterowania witryny dodaj widżet przeznaczony do wstawiania kodu JavaScript innej firmy, skopiuj do niego pierwszą lub drugą wersję kodu pobierania przedstawionego powyżej i umieść widżet bliżej na początek szablonu (nawiasem mówiąc, nie jest to wcale konieczne, ponieważ skrypt MathJax jest ładowany asynchronicznie). To wszystko. Teraz poznaj składnię znaczników MathML, LaTeX i ASCIIMathML, a będziesz gotowy do wstawiania formuł matematycznych na stronach internetowych swojej witryny.

Każdy fraktal jest skonstruowany według pewnej reguły, którą konsekwentnie stosuje się nieograniczoną liczbę razy. Każdy taki moment nazywany jest iteracją.

Iteracyjny algorytm konstruowania gąbki Mengera jest dość prosty: oryginalny sześcian o boku 1 jest podzielony płaszczyznami równoległymi do jego ścian na 27 równych sześcianów. Usuwa się z niego jedną środkową kostkę i 6 sąsiadujących z nią kostek. Rezultatem jest zestaw składający się z pozostałych 20 mniejszych kostek. Robiąc to samo z każdą z tych kostek, otrzymamy zestaw składający się z 400 mniejszych kostek. Kontynuując ten proces w nieskończoność, otrzymujemy gąbkę Mengera.

Wybór redaktora
Gulasz warzywny wcale nie jest tak pustym daniem, jak się czasem wydaje, jeśli nie przestudiujesz dokładnie przepisu. Na przykład dobrze smażone...

Wiele gospodyń domowych nie lubi lub po prostu nie ma czasu na przygotowywanie skomplikowanych potraw, dlatego rzadko je robią. Do tych przysmaków zaliczają się...

Krótka lekcja gotowania i orientalistyki w jednym artykule! Türkiye, Krym, Azerbejdżan i Armenia – co łączy te wszystkie kraje? Bakława -...

Ziemniaki smażone to proste danie, jednak nie każdemu wychodzi idealnie. Złocistobrązowa skórka i całe kawałki są idealnymi wskaźnikami umiejętności...
Przepis na gotowanie jagnięciny z kuskusem Wielu słyszało słowo „Kuskus”, ale niewielu nawet sobie wyobraża, co to jest....
Przepis ze zdjęciami znajdziesz poniżej. Oferuję przepis na proste i łatwe w przygotowaniu danie, ten pyszny gulasz z...
Zawartość kalorii: nieokreślona Czas gotowania: nieokreślona Wszyscy kochamy smaki dzieciństwa, bo przenoszą nas w „piękne odległe”...
Kukurydza konserwowa ma po prostu niesamowity smak. Z jego pomocą uzyskuje się przepisy na sałatki z kapusty pekińskiej z kukurydzą...
Zdarza się, że nasze sny czasami pozostawiają niezwykłe wrażenie i wówczas pojawia się pytanie, co one oznaczają. W związku z tym, że do rozwiązania...