Мобильный интернет: какая скорость вам нужна? Какая скорость домашнего интернета нужна вам на самом деле Значит мегабит в секунду.


В сегодняшней статье мы займемся измерением информации. Все картинки, звуки и видео ролики, которые мы с вами видим на экранах мониторов, представляют собой не более чем цифры. И эти цифры можно измерить, и, сейчас, вы научитесь переводить мегабиты в мегабайты и мегабайты в гигабайты.

Если вам важно знать, сколько в 1 гб мб или сколько в 1 мб кб, то эта статья для вас. Чаще всего такие данные нужны программистам, оценивающим занимаемый их программами объем, но, иногда, не мешает и рядовым пользователям для оценки размера скачиваемых или хранимых данных.

Если вкратце, то достаточно знать это:

1 байт = 8 бит

1 килобайт = 1024 байта

1 мегабайт = 1024 килобайта

1 гигабайт = 1024 мегабайта

1 терабайт = 1024 гигабайта

Общепринятые сокращения: килобайт=кб, мегабайт=мб, гигабайт=гб.

Недавно я получил вопрос от моего читателя: «Что больше кб или мб?». Надеюсь, теперь, ответ на него знает каждый.

Единицы измерения информации в подробностях

В информационно мире применяется не привычная для нас, десятеричная система измерения, а двоичная. Это значит, что одна цифра может принимать значение не от 0 до 9, а от 0 до 1.

Простейшей единицей измерения информации является 1 бит, он может быть равен 0 или 1. Но эта величина очень мала для современного объема данных, поэтому используют биты редко. Чаще применяют байты, 1 байт равен 8 бит и может принимать значение от 0 до 15 (шестнадцатеричная система исчисления). Правда вместо чисел 10-15 применяются буквы от А до F.

Но и эти объемы данных невелики, поэтому применяются привычные всем приставки кило- (тысяча), мега-(миллион), гига-(миллиард).

Стоит отметить, что в инфомире, килобайт равен не 1000 байт, а 1024. И если вы хотите узнать, сколько килобайт в мегабайте, то вы тоже получите число 1024. На вопрос, сколько мегабайт в гигабайте вы услышите тот же ответ – 1024.

Определяется это также особенностью двоичной системы исчисления. Если, при использовании десятков, каждый новый разряд мы получаем умножением на 10 (1, 10, 100, 1000 и т.д.), то в двоичной системе новый разряд появляется после умножения на 2.

Это выглядит вот так:

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

Число, состоящее из 10 цифр двоичной системы, может иметь всего лишь 1024 значения. Это больше чем 1000, но ближе всего к привычной приставке кило-. Аналогичным образом применяются и мега- и гига и тера-.

На более высоких уровнях сетевых моделей, как правило, используется более крупная единица - байт в секунду (Б/c или Bps , от англ. b ytes p er s econd ) равная 8 бит/c.

Производные единицы

Для обозначения больших скоростей передачи применяют более крупные единицы, образованные с помощью приставок системы Си кило- , мега- , гига- и т. п. получая:

  • Килобиты в секунду - кбит/c (kbps)
  • Мегабиты в секунду - Мбит/c (Mbps)
  • Гигабиты в секунду - Гбит/c (Gbps)

К сожалению, в отношении трактовки приставок существует неоднозначность. Встречается два подхода:

  • килобит трактуется как 1000 бит (согласно СИ , как кило грамм или кило метр), мегабит как 1000 килобит и т. д.
  • килобит трактуется как 1024 бита т.ч. 8 кбит/c = 1 КБ /c (а не 0,9765625).

Для однозначного обозначения приставки кратной 1024 (а не 1000), Международной электротехнической комиссией были придуманы приставки «киби » (сокращенно Ки- , Кi- ), «меби » (сокращенно Ми- , Mi- ) и т. д.

  • 1 байт - 8 бит
  • 1 кибибит - 1024 бит - 128 байт
  • 1 мебибит - 1048576 бит - 131072 байт - 128 кбайт
  • 1 Гибибит - 1073741824 бит - 134217728 байт - 131072 кбайт - 128 мбайт

В телекоммуникационной отрасли принята система СИ для обозначения приставки кило. То есть 128 Кбит = 128000 бит.

Частые ошибки

  • Начинающие часто путают килобиты c килобайтами , ожидая скорости 256 КБ/c от канала 256 кбит/c (на таком канале скорость будет 256 000 / 8 = 32 000 Б/c = 32 000 / 1 000 = 32 КБ/сек).
  • Часто (ошибочно или намеренно) путают боды и биты/c.
  • 1 кбод (в отличие от Кбит/c) всегда равен 1000 бод.

См. также

Wikimedia Foundation . 2010 .

  • Мегабит
  • Мегавати Сукарнопутри

Смотреть что такое "Мегабит в секунду" в других словарях:

    мегабит в секунду - Мбит/с Единица скорости передачи данных = 1024 Кбит/с Тематики информационные технологии в целом Синонимы Мбит/с EN Mbit/sMbpsmegabits per second …

    шифрование данных со скоростью 1 мегабит в секунду - — [] Тематики защита информации EN megabit data encryption … Справочник технического переводчика

    Мегабит - количество информации, 106 или 1000000 (миллион) бит. Используется сокращённое обозначение Mbit или, в русском обозначении, Мбит (мегабит не следует путать с мегабайтом МБ). В соответствии с международным стандартом МЭК 60027 2 единицы бит и байт … Википедия

    Бит в секунду - Бит в секунду, бит/с (англ. bits per second, bps) базовая единица измерения скорости передачи информации, используемая на физическом уровне сетевой модели OSI или TCP/IP. На более высоких уровнях сетевых моделей, как правило,… … Википедия

    Килобит в секунду - Бит в секунду, бит/с (англ. bits per second, bps) базовая единица измерения скорости передачи информации, используемая на физическом уровне сетевой модели OSI или TCP/IP. На более высоких уровнях сетевых моделей, как правило, используется более… … Википедия

    EV-DO - (Evolution Data Only) технология передачи данных, используемая в сетях сотовой связи стандарта CDMA. 1X EV DO это фаза развития стaндарта мобильной связи CDMA2000 1x, и относится ко второму поколению мобильной связи. EV DO … … Википедия

    СОТОВАЯ СВЯЗЬ - (англ. cellular phone, подвижная радиорелейная связь), вид радиотелефонной связи, в которой конечные устройства мобильные телефоны (см. МОБИЛЬНЫЙ ТЕЛЕФОН) соединены друг с другом с помощью сотовой сети совокупности специальных приемопередатчиков… … Энциклопедический словарь

    Скорость передачи информации - Разъём 8P8C. Скорость передачи информации скорость передачи данных, выраженная в количес … Википедия

    Видео - (от лат. video смотрю, вижу) электронная технология формирования, записи, обработки, передачи, хранения и воспроизведения сигналов изображения, основанная на принципах телевидения, а также аудиовизуальное произведение, записанное … Википедия

    Video - Видео (от лат. video смотрю, вижу) под этим термином понимают широкий спектр технологий записи, обработки, передачи, хранения и воспроизведения визуального и аудиовизуального материала на мониторах. Когда в быту говорят «видео» то обычно имеют … Википедия

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 мегабит в секунду (метрический) [Мб/с] = 0,00643004115226337 Оптическая несущая 3

Исходная величина

Преобразованная величина

бит в секунду байт в секунду килобит в секунду (метрический) килобайт в секунду (метрический) кибибит в секунду кибибайт в секунду мегабит в секунду (метрический) мегабайт в секунду (метрический) мебибит в секунду мебибайт в секунду гигабит в секунду (метрический) гигабайт в секунду (метрический) гибибит в секунду гибибайт в секунду терабит в секунду (метрический) терабайт в секунду (метрический) тебибит в секунду тебибайт в секунду Ethernet 10BASE-T Ethernet 100BASE-TX (быстрый) Ethernet 1000BASE-T (гигабит) Оптическая несущая 1 Оптическая несущая 3 Оптическая несущая 12 Оптическая несущая 24 Оптическая несущая 48 Оптическая несущая 192 Оптическая несущая 768 ISDN (одиночный канал) ISDN (двойной канал) модем (110) модем (300) модем (1200) модем (2400) модем (9600) модем (14.4k) модем (28.8k) модем (33.6k) модем (56k) SCSI (асинхронный режим) SCSI (синхронный режим) SCSI (Fast) SCSI (Fast Ultra) SCSI (Fast Wide) SCSI (Fast Ultra Wide) SCSI (Ultra-2) SCSI (Ultra-3) SCSI (LVD Ultra80) SCSI (LVD Ultra160) IDE (PIO mode 0) ATA-1 (PIO mode 1) ATA-1 (PIO mode 2) ATA-2 (PIO mode 3) ATA-2 (PIO mode 4) ATA/ATAPI-4 (DMA mode 0) ATA/ATAPI-4 (DMA mode 1) ATA/ATAPI-4 (DMA mode 2) ATA/ATAPI-4 (UDMA mode 0) ATA/ATAPI-4 (UDMA mode 1) ATA/ATAPI-4 (UDMA mode 2) ATA/ATAPI-5 (UDMA mode 3) ATA/ATAPI-5 (UDMA mode 4) ATA/ATAPI-4 (UDMA-33) ATA/ATAPI-5 (UDMA-66) USB 1.X FireWire 400 (IEEE 1394-1995) T0 (полный сигнал) T0 (B8ZS полный сигнал) T1 (полезный сигнал) T1 (полный сигнал) T1Z (полный сигнал) T1C (полезный сигнал) T1C (полный сигнал) T2 (полезный сигнал) T3 (полезный сигнал) T3 (полный сигнал) T3Z (полный сигнал) T4 (полезный сигнал) Virtual Tributary 1 (полезный сигнал) Virtual Tributary 1 (полный сигнал) Virtual Tributary 2 (полезный сигнал) Virtual Tributary 2 (полный сигнал) Virtual Tributary 6 (полезный сигнал) Virtual Tributary 6 (полный сигнал) STS1 (полезный сигнал) STS1 (полный сигнал) STS3 (полезный сигнал) STS3 (полный сигнал) STS3c (полезный сигнал) STS3c (полный сигнал) STS12 (полезный сигнал) STS24 (полезный сигнал) STS48 (полезный сигнал) STS192 (полезный сигнал) STM-1 (полезный сигнал) STM-4 (полезный сигнал) STM-16 (полезный сигнал) STM-64 (полезный сигнал) USB 2.X USB 3.0 USB 3.1 FireWire 800 (IEEE 1394b-2002) FireWire S1600 and S3200 (IEEE 1394-2008)

Подробнее о передаче данных

Общие сведения

Данные могут быть как в цифровом, так и в аналоговом формате. Передача данных также может происходить в одном из этих двух форматов. Если и данные, и способ их передачи - аналоговые, то и передача данных - аналоговая. Если либо данные, либо способ передачи - цифровые, то и передача данных называется цифровой. В этой статье мы поговорим именно о цифровой передаче данных. Сейчас все чаще используют цифровую передачу данных и хранят их в цифровом формате, так как это позволяет ускорить процесс передачи и увеличить безопасность обмена информацией. Если не считать вес устройств, необходимых для пересылки и обработки данных, то сами цифровые данные - невесомы. Замена аналоговых данных цифровыми помогает облегчить процесс обмена информацией. Данные в цифровом формате удобнее брать с собой в дорогу, так как по сравнению с данными в аналоговом формате, например на бумаге, цифровые данные не занимают место в багаже, если не считать носителя. Цифровые данные позволяют пользователям с доступом к Интернету работать в виртуальном пространстве из любого уголка мира, где есть Интернет. С цифровыми данными могут работать несколько пользователей одновременно, получив доступ к компьютеру, на котором они хранятся, и используя программы удаленного администрирования, описанные ниже. Различные интернет-приложения, например Google Docs, Wikipedia, форумы, блоги, и другие, также позволяют пользователям совместно работать над одним документом. Именно поэтому передача данных в цифровом формате так широко используется. В последнее время становятся популярными экологически чистые и «зеленые» офисы, где стараются перейти на безбумажную технологию, чтобы уменьшить углеродный след компании. Это сделало цифровой формат еще более популярным. Утверждение о том, что избавившись от бумаги, мы намного сократим энергетические затраты, не совсем правильно. Во многих случаях это мнение навеяно рекламными компаниями тех, кому выгодно, чтобы больше людей перешло на безбумажные технологии, например, производителям компьютеров, и программного обеспечения. Это также выгодно тем, кто предоставляет услуги в этой области, например облачные вычисления. На самом деле эти затраты почти равны, так как для работы компьютеров, серверов, и поддержки сети необходимо большое количество энергии, которую часто добывают из невосполнимых источников, например сжигая ископаемое топливо. Многие надеются, что в будущем безбумажные технологии действительно будут более экономичны. В повседневной жизни люди тоже стали чаще работать с цифровыми данными, например, предпочитая электронные книги и планшеты бумажным. Большие компании часто объявляют в пресс-релизах, что переходят на безбумажную работу, чтобы показать, что они заботятся об окружающей среде. Как описано выше, иногда это пока только рекламный ход, но несмотря на это все больше и больше компаний уделяют внимание цифровой информации.

Во многих случаях отправка и получение данных в цифровом формате автоматизирована, и для такого обмена данных от пользователей требуется самый минимум. Иногда им всего лишь нужно нажать кнопку в программе, в которой они создали данные - например, при отправлении электронной почты. Это очень удобно для пользователей, так как большая часть работы по передаче данных происходит «за кадром», в центрах передачи и обработки данных. Эта работа включает в себя не только непосредственную обработку данных, но и создание инфраструктур для их быстрой передачи. Например, для того, чтобы обеспечить быструю связь по Интернету, по дну океана проложена обширная система кабелей. Количество этих кабелей постепенно увеличивается. Такие глубоководные кабели по нескольку раз пересекают дно каждого океана и проложены по морям и проливам для того, чтобы соединить между собой страны с доступом к морю. Прокладка и поддержка этих кабелей в рабочем состоянии - лишь один из примеров работы «за кадром». Кроме этого, такая работа включает обеспечение и поддержку связи в дата-центрах и у интернет-провайдеров, поддержание серверов компаниями, предлагающими хостинг, и обеспечение бесперебойной работы веб-сайтов администраторами, особенно теми, что предоставляют пользователям возможность передавать данные в большом объеме, например пересылку почты, скачивание файлов, публикации материалов, и другие услуги.

Для передачи данных в цифровом формате необходимы следующие условия: данные должны быть правильно кодированы, то есть, в правильном формате; необходим канал связи, передатчик и приемник, и, наконец, протоколы для передачи данных.

Кодирование и дискретизация

Имеющиеся данные кодируют так, чтобы принимающая сторона могла их прочесть и обработать. Кодирование или преобразование данных из аналогового формата в цифровой называется дискретизацией. Чаще всего данные кодируют в двоичной системе, то есть информация представлена как ряд чередующихся единиц и нулей. После того, как данные закодированы в двоичной системе, их передают в виде электромагнитных сигналов.

Если данные в аналоговом формате необходимо передать по цифровому каналу, их дискретизируют. Так, например, аналоговые телефонные сигналы с телефонной линии кодируют в цифровые, чтобы передать их по Интернету получателю. В процессе дискретизации используют теорему Котельникова , которая в английском варианте называется теоремой Найквиста-Шеннона, или просто теоремой о дискретизации. Согласно этой теореме, сигнал можно преобразовать из аналогового в цифровой без потери качества в случае, если его максимальная частота не превышает половины частоты отсчётов. Здесь частота отсчётов - это частота, с которой «берут пробу» аналогового сигнала, то есть определяют его характеристики в момент отсчета.

Кодирование сигнала может быть как с защищенным, так и с открытым доступом. Если сигнал защищен, и его перехватят лица, которым он не предназначался, то они не смогут его декодировать. В этом случае используют криптостойкое шифрование.

Канал связи, передатчик и приемник

Канал связи предоставляет среду для передачи информации, а передатчики и приемники - непосредственно участвуют в передаче и получении сигнала. Передатчик состоит из устройства, кодирующего информацию, например модема, и устройства, передающего данные в виде электромагнитных волн. Это может быть, например, и простейшее устройство в форме лампы накаливания, передающей сообщения с помощью азбуке Морзе, и лазер, и светодиод. Чтобы распознавать эти сигналы, необходимо приемное устройство. Примеры приемных устройств - фотодиоды, фоторезисторы и фотоумножители, которые распознают световые сигналы, или радиоприемники, принимающие радиоволны. Некоторые такие устройства работают только с аналоговыми данными.

Протоколы передачи данных

Протоколы передачи данных похожи на язык, так как они осуществляют общение между устройствами во время передачи данных. Они также распознают ошибки, возникающие во время этой передачи, и помогают их устранить. Пример широко используемого протокола - протокол управления передачей, или TCP (от английского Transmission Control Protocol).

Применение

Цифровая передача важна потому, что без нее невозможно было бы использовать компьютеры. Ниже приведены несколько интересных примеров использования цифровой передачи данных.

IP-телефония

IP-телефония, также известная как телефония voice over IP (VoIP), в последнее время набирает популярность как альтернативный вид общения по телефону. Сигнал передают по цифровому каналу, используя Интернет вместо телефонной линии, что позволяет передавать не только звук, но и другие данные, например видео. Примерами самых больших провайдеров таких услуг являются Skype (Скайп) и Google Talk. В последнее время большой популярностью пользуется программа LINE созданная в Японии. Большинство провайдеров предоставляют услуги по аудио- и видеозвонкам между компьютерами и смартфонами, подключенными к Интернету, бесплатно. Дополнительные услуги, например звонки с компьютера на телефон, предоставляют за дополнительную плату.

Работа с тонким клиентом

Цифровая передача данных помогает компаниям не только упростить хранение и обработку данных, но также работу с компьютерами внутри организации. Иногда компании используют часть компьютеров для простых вычислений или операций, например для доступа в Интернет, и использование обычных компьютеров в этой ситуации не всегда целесообразно, так как компьютерная память, мощность, и другие параметры, не используются в полной мере. Одно из решений в такой ситуации - подключить такие компьютеры к серверу, который хранит данные и запускает программы, необходимые этим компьютерам для работы. В этом случае компьютеры с упрощенной функциональностью называются тонкими клиентами. Их можно использовать только для простых задач, например для доступа к библиотечному каталогу или для использования простых программ, таких как программы для кассового аппарата, которые записывают в базу данных информацию о продаже, а также выбивают чеки. Обычно пользователь тонкого клиента работает с монитором и клавиатурой. Информация не обрабатывается на тонком клиенте, а посылается на сервер. Удобство тонкого клиента в том, что он дает пользователю удаленный доступ к серверу через монитор и клавиатуру, и для него не нужен мощный микропроцессор, жесткий диск, и другие аппаратные средства.

В некоторых случаях используют специальное оборудование, но часто достаточно планшетного компьютера или монитора и клавиатуры от обычного компьютера. Единственная информация, которую обрабатывает сам тонкий клиент - это интерфейс работы с системой; все остальные данные обрабатывает сервер. Интересно заметить, что иногда обычные компьютеры, на которых, в отличие от тонкого клиента, обрабатывают данные, называют толстыми клиентами.

Использование тонких клиентов не только удобно, но и выгодно. Установить новый тонкий клиент не требует больших затрат, так как для него не нужно дорогостоящих программных и аппаратных средств, таких как память, жесткий диск, процессор, программное обеспечение, и других. К тому же, жесткие диски и процессоры перестают работать в слишком пыльных, жарких или холодных помещениях, а также при повышенной влажности и в других неблагоприятных условиях. При работе с тонкими клиентами, благоприятные условия нужны только в комнате с серверами, так как в тонких клиентах нет процессоров и жестких дисков, а мониторы и устройства ввода данных нормально работают и в более тяжелых условиях.

Недостаток тонких клиентов в том, что они плохо работают, если необходимо часто обновлять графический интерфейс, например для видео и игр. Проблематично также и то, что если сервер перестанет работать, то все подключенные к нему тонкие клиенты тоже не будут работать. Несмотря на эти недостатки, компании все чаще и чаще используют тонкие клиенты.

Удаленное администрирование

Удаленное администрирование похоже на работу с тонким клиентом в том, что компьютер, имеющий доступ к серверу (клиент), может хранить и обрабатывать данные, а также использовать программы на сервере. Разница заключается в том, что клиент в этом случае обычно «толстый». К тому же, тонкие клиенты чаще всего подключены к локальной сети, в то время как удаленное администрирование происходит через Интернет. У удаленного администрирования есть множество применений, например, оно позволяет людям удаленно работать с сервером компании, или со своим домашним сервером. Компании, которые выполняют часть работы в удаленных офисах или сотрудничают со сторонними исполнителями, могут предоставлять доступ к информации таким офисам через удаленное администрирование. Это удобно если, например, работа по поддержке клиентов проходит в одном из таких офисов, но всем кадрам компании необходим доступ к базе данных клиентов. Удаленное администрирование обычно безопасно и людям со стороны не так легко получить доступ к серверам, хотя иногда существует риск несанкционированного доступа.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

99663 08.08.2009

Твитнуть

Плюсануть

Для начала попробуем разобраться, что же такое биты и байты. Бит это самая наименьшая единица измерения количества информации. Наравне с битом активно используется байт. Байт равен 8 бит. Попробуем изобразить это наглядно на следующей диаграмме.

Думаю, с этим все понятно и не имеет смысла останавливаться подробнее. Так как бит и байт это очень маленькие величины, то в основном они используются с приставками кило, мега и гига. Наверняка вы слышали о них еще со школьной программы. Общепринятые единицы и их сокращения мы соединили в таблицу.

Теперь попробуем определиться с величинами измерения скорости интернет соединения.

Говоря понятным языком, скорость подключения это количество получаемой или отправляемой вашим компьютером информации в единицу времени. В качестве единицы времени в данном случае принято считать секунду а в качестве количества информации кило или мегабит.

Таким образом, если ваша скорость 128 Kbps это означает, что ваше соединение имеет пропускную способность 128 килобит в секунду или же 16 килобайт в секунду.

Много это или мало судить вам. Для того чтобы более материально почувствовать вашу скорость рекомендую воспользоваться нашими тестами. Определить время, необходимое для закачки файла , определенного вами размера, при вашей скорости подключения. Также вы можете посмотреть, файл какого объема вы сможете скачать за определенный вами период времени при вашей скорости подключения.

Используя наши тесты необходимо помнить и учитывать, что наш сервер, на котором собственно и расположены все эти тесты находится от вашего компьютера достаточно далеко и соответственно на результатах может сказываться как загруженность нашего сервера (на нашем сайте в часы пик одновременно производят замер скорости соединения более 1000 человек), так и загруженность интернет линий.

Length and Distance Converter Mass Converter Dry Volume and Common Cooking Measurements Area Converter Volume and Common Cooking Measurement Converter Temperature Converter Pressure, Stress, Young’s Modulus Converter Energy and Work Converter Power Converter Force Converter Time Converter Linear Speed and Velocity Converter Angle Converter Fuel Efficiency, Fuel Consumption and Fuel Economy Converter Numbers Converter Converter of Units of Information and Data Storage Currency Exchange Rates Women’s Clothing and Shoe Sizes Men’s Clothing and Shoe Sizes Angular Velocity and Rotational Frequency Converter Acceleration Converter Angular Acceleration Converter Density Converter Specific Volume Converter Moment of Inertia Converter Moment of Force Converter Torque Converter Specific Energy, Heat of Combustion (per Mass) Converter Specific energy, Heat of Combustion (per Volume) Converter Temperature Interval Converter Coefficient of Thermal Expansion Converter Thermal Resistance Converter Thermal Conductivity Converter Specific Heat Capacity Converter Heat Density, Fire Load Density Heat Flux Density Converter Heat Transfer Coefficient Converter Volumetric Flow Rate Converter Mass Flow Rate Converter Molar Flow Rate Converter Mass Flux Converter Molar Concentration Converter Mass Concentration in a Solution Converter Dynamic (Absolute) Viscosity Converter Kinematic Viscosity Converter Surface Tension Converter Permeation, Permeance, Water Vapour Permeability Converter Moisture Vapor Transmission Rate Converter Sound Level Converter Microphone Sensitivity Converter Sound Pressure Level (SPL) Converter Sound Pressure Level Converter With Selectable Reference Pressure Luminance Converter Luminous Intensity Converter Illuminance Converter Digital Image Resolution Converter Frequency and Wavelength Converter Optical Power (Diopter) to Focal Length Converter Optical Power (Diopter) to Magnification (X) Converter Electric Charge Converter Linear Charge Density Converter Surface Charge Density Converter Volume Charge Density Converter Electric Current Converter Linear Current Density Converter Surface Current Density Converter Electric Field Strength Converter Electric Potential and Voltage Converter Electrical Resistance Converter Electrical Resistivity Converter Electrical Conductance Converter Electrical Conductivity Converter Capacitance Converter Inductance Converter American Wire Gauge Converter Conversion of Levels in dBm, dBV, Watts and Other Units Magnetomotive Force Converter Magnetic Field Strength Converter Magnetic Flux Converter Magnetic Flux Density Converter Radiation Absorbed Dose Rate, Total Ionizing Radiation Dose Rate Converter Radioactivity. Radioactive Decay Converter Radiation Exposure Converter Radiation. Absorbed Dose Converter Metric Prefixes Converter Data Transmission Converter Converter of Typography and Digital Imaging Units Lumber Volume Measures Converter Molar Mass Calculator Periodic Table

1 kibibit/second = 0.0009765625 mebibit/second

From:

To:

bit/second byte/second kilobit/second (SI def.) kilobyte/second (SI def.) kibibit/second kibibyte/second megabit/second (SI def.) megabyte/second (SI def.) mebibit/second mebibyte/second gigabit/second (SI def.) gigabyte/second (SI def.) gibibit/second gibibyte/second terabit/second (SI def.) terabyte/second (SI def.) tebibit/second tebibyte/second ethernet ethernet (fast) ethernet (gigabit) OC1 OC3 OC12 OC24 OC48 OC192 OC768 ISDN (single channel) ISDN (dual channel) modem (110) modem (300) modem (1200) modem (2400) modem (9600) modem (14.4k) modem (28.8k) modem (33.6k) modem (56k) SCSI (Async) SCSI (Sync) SCSI (Fast) SCSI (Fast Ultra) SCSI (Fast Wide) SCSI (Fast Ultra Wide) SCSI (Ultra-2) SCSI (Ultra-3) SCSI (LVD Ultra80) SCSI (LVD Ultra160) IDE (PIO mode 0) IDE (PIO mode 1) IDE (PIO mode 2) IDE (PIO mode 3) IDE (PIO mode 4) IDE (DMA mode 0) IDE (DMA mode 1) IDE (DMA mode 2) IDE (UDMA mode 0) IDE (UDMA mode 1) IDE (UDMA mode 2) IDE (UDMA mode 3) IDE (UDMA mode 4) IDE (UDMA-33) IDE (UDMA-66) USB 1.X FireWire 400 (IEEE 1394-1995) T0 (payload) T0 (B8ZS payload) T1 (signal) T1 (payload) T1Z (payload) T1C (signal) T1C (payload) T2 (signal) T3 (signal) T3 (payload) T3Z (payload) T4 (signal) Virtual Tributary 1 (signal) Virtual Tributary 1 (payload) Virtual Tributary 2 (signal) Virtual Tributary 2 (payload) Virtual Tributary 6 (signal) Virtual Tributary 6 (payload) STS1 (signal) STS1 (payload) STS3 (signal) STS3 (payload) STS3c (signal) STS3c (payload) STS12 (signal) STS24 (signal) STS48 (signal) STS192 (signal) STM-1 (signal) STM-4 (signal) STM-16 (signal) STM-64 (signal) USB 2.X USB 3.0 USB 3.1 FireWire 800 (IEEE 1394b-2002) FireWire S1600 and S3200 (IEEE 1394-2008)

More about Data Transmission

Overview

Data exists in digital and analog format and transmission can happen for both types through digital and analog channels. If both the data and the transmission method are analog, then this is analog data transmission, but if at least one or both are digital, then the data transmission is digital. This article focuses on the digital data transmission. Today more and more digital data is created and transmitted because it allows for fast and secure exchange of information. Digital data has no weight, thus the only weight associated with using digital data is often that of the transmitting device and the receiving or reading device. Using digital data simplifies the information backup process, does not contribute to weight when moving or traveling, compared to non-digital forms of data, such as books versus text files. Digital data transmission, storage, and processing makes it easier to work with data virtually anywhere in the world because it can be stored in a location that can be accessible by multiple people as long as they have Internet connection. People can also modify this data and work collaboratively on the same document by using remote computing described below, or by working with data shared online, for example with the files shared on Google Docs, or on articles in Wikipedia. This is why data transmission is so important. The recent trend to go paperless to decrease one’s carbon footprint is also making digital data transfer popular. In fact, some believe that at the moment this is a marketing ploy, because the digital footprint may, in fact, be very similar for working with printed media. This is because energy is required for running the services to support digital data, and often this energy is produced from unsustainable sources, such as fossil fuels. However, it is the hope of many that we will soon develop technology that is ecologically efficient for working with digital data, compared to the pre-digital era. In everyday life people are choosing e-readers and tablets in favor of printed media, while large organizations make environmental statements when they keep all of their documentation in digital format and transmit data electronically instead of physically moving paper. As discussed above, this may be simply a marketing strategy at the moment, but nonetheless in part because of this strategy more and more companies are working on digitizing much of their data flow.

In many cases users need to take only minimal steps to ensure data transmission, and only in some situations direct involvement of the user is required, for example when sending emails. This is why it is convenient for the users, although much of the work happens “behind the scenes” in companies and organizations that manage data transmission. For example, to ensure fast Internet connectivity, and hence - fast data transmission between continents, a network of cables was and is still being laid along the ocean floor. It is also known as submarine cable. It connects most coastal countries. These cables cross all of the oceans multiple times, connecting countries through the seas and the straits. Laying and maintaining the cable is just one of the examples of the work “behind the scenes” - it ranges from the work that Internet service and hosting providers do, to the maintenance of servers in data centers, to the local work of website administrators who provide data transfer services to their users, like posting information, exchanging email, downloading files, etc.

To transmit data, several conditions have to be met: data has to be encoded, there needs to be a transmission channel as well as a transmitter and receiver, and communication protocols must be in place.

Encoding and Sampling

Data has to be encoded in such a way that the receiving party can read it. Sampling is another term used for data conversion. Generally data is encoded using the binary system, which means that each unit of information is represented as either a 1 or a 0. It is then transmitted as electromagnetic signals.

Often the analog data is converted to digital to be transmitted. For example analog phone calls that originated from a land line or a cellular phone may be converted to digital signals and sent via the Internet to the recipient. During this conversion the Kotelnikov Theorem, also known as the Nyquist-Shannon Sampling Theorem in English , is used. It can be summarized to point out that when converting analog signal to digital, so that it can be transmitted via a digital channel without loss of quality, the signal must not contain any frequencies higher than the half of the selected sampling rate.

Encoding could be secure to ensure that third parties besides the intended receiver cannot decode it if this data is intercepted. Secure encryption protocols are used for this purpose.

Transmission Channel, Transmitter, and Receiver

A transmission channel creates a medium for transmitting the data. Transmitters and receivers are devices that send and receive the data respectively. The transmitter consists of a modem that codes information and any device that transmits electromagnetic waves, from an incandescent lamp that was used to transmit Morse code, to lasers, to LEDs. A receiver that can detect the electromagnetic signal that the transmitter sent is also necessary. Some examples of receivers include photodiodes, photoresistors, and photomultipliers that detect light, or radio receivers that can detect radio waves. Some of these devices can only work with analog data.

Communication Protocols

Communication protocols are similar to a language in that they facilitate communication during all steps of the transfer of data. They also allow to identify and solve errors. One of the commonly used protocols is the Transmission Control Protocol, or TCP.

Applications

Digital data transmission is paramount in computing because without it using computers would not be possible. Below are some interesting examples of what data transmission enables the users to do.

IP Telephony

IP telephony or voice over IP (VoIP) technology is becoming a popular alternative to communication by phone via the telephone network. This form of data transmission uses the Internet. Some of the biggest providers are Skype and Google Talk. LINE is a newer product that is gaining popularity in Japan and globally. Many of the current providers allow free audio and video calls between computers or smartphones, and charge for other services such as conference calling or computer to landline or cellular phone calls through the telephone network.

Thin Client Computing

Data transmission allows organizations to simplify their computing solutions. Some organizations have multiple computers set up for internal use but for some of them only very simple features are required. These computers are connected to the server, which does some of the work for them - they are called client computers or clients in this case. In this setup thin client computing is often used. The client computers have very basic features, for example some workstations may provide only Internet access, some may allow the use of the library catalog, others yet may support simple applications such as data entry, for example to track sales. These clients with basic features are called thin clients, hence the term, thin client computing. The user of a thin client works with a screen and an input device such as a keyboard. The thin client sends user requests and data to the remote server, where all the necessary computing is done. In essence, the thin client is a device that allows the user at the client site to access the server remotely without having to process significant amounts of data or run software at the client site.

In some cases client sites use thin client hardware, while in other situations regular computers or sometimes tablets are employed. User interface needs to be processed locally by the thin client, but the rest of the processing is done on the server. In contrast with thin clients, regular computers that process data locally are sometimes called fat clients.

Thin client computing is convenient because it is cheap to install additional clients - most of them do not require expensive memory, processing devices, and software. Thin clients also allow minimizing security vulnerabilities, because the only vulnerable unit in this setup is the server. Hard drives and CPUs work well only within a certain temperature range, and they cannot tolerate some hazards in the environment such as dust and humidity. When thin clients are used, the environment needs to be carefully controlled only in the server room. Clients can work outside of these temperature ranges and in more hazardous environments, as long as they do not have local processing and storage capabilities, and as long as the display and the input devices have higher tolerance to hazardous environments, which they usually do.

Thin clients may not work well when frequent updates of the graphic user interface are needed, such as when working with video and gaming. If the server stops working, all of the clients will be disabled until they are connected to a working server. Despite these drawbacks, thin clients are gaining popularity because of their benefits.

Remote Computing

Remote computing is similar to thin client computing in that the client computes access the server and often can manipulate the data and run software on the server. The difference is that a client that accesses the server is usually a fat client, that is, a regular computer. Thin clients usually work on the same local network as the server, while remote computing happens between the server and the client outside of the local network, often over the Internet. Remote computing has many applications. For example it allows people to work remotely while still having access to their company or home server. Companies can connect through remote computing to remote offices, where they outsource some of their activities, such as customer support. Remote computing allows for secure access, to prevent unauthorized people from using the servers, although security is sometimes a concern.

Do you have difficulty translating a measurement unit into another language? Help is available! Post your question in TCTerms and you will get an answer from experienced technical translators in minutes.

Выбор редакции
Три дня длилось противостояние главы управы района "Беговой" и владельцев легендарной шашлычной "Антисоветская" . Его итог – демонтаж...

Святой великомученик Никита родился в IV веке в Готии (на восточной стороне реки Дунай в пределах нынешней Румынии и Бессарабии) во...

РЕШЕНИЕ ИМЕНЕМ РОССИЙСКОЙ ФЕДЕРАЦИИ 07 мая 2014 года г. Ефремов Тульская областьЕфремовский районный суд Тульской области в...

Откуда это блюдо получило такое название? Лично я не знаю. Есть еще одно – «мясо по-капитански» и мне оно нравится больше. Сразу...
Мясо по-французски считается исконно русским блюдом, очень сытное блюдо, с удачным сочетанием картофеля, помидоров и мяса. Небольшие...
Мне хочется предложить хозяюшкам на заметку рецепт изумительно нежной и питательной икры из патиссонов. Патиссоны имеют схожий с...
Бананово-шоколадную пасту еще называют бананово-шоколадным крем-джемом, поскольку бананы сначала отвариваются и масса по консистенции и...
Всем привет! Сегодня в расскажу и покажу, как испечь открытый пирог с адыгейским сыром и грибами . Чем мне нравится этот рецепт — в нём...
Предлагаю вам приготовить замечательный пирог с адыгейским сыром. Учитывая, что пирог готовится на дрожжевом тесте, его приготовление не...